Abstract:Traffic classification is vital for cybersecurity, yet encrypted traffic poses significant challenges. We present PacketCLIP, a multi-modal framework combining packet data with natural language semantics through contrastive pretraining and hierarchical Graph Neural Network (GNN) reasoning. PacketCLIP integrates semantic reasoning with efficient classification, enabling robust detection of anomalies in encrypted network flows. By aligning textual descriptions with packet behaviors, it offers enhanced interpretability, scalability, and practical applicability across diverse security scenarios. PacketCLIP achieves a 95% mean AUC, outperforms baselines by 11.6%, and reduces model size by 92%, making it ideal for real-time anomaly detection. By bridging advanced machine learning techniques and practical cybersecurity needs, PacketCLIP provides a foundation for scalable, efficient, and interpretable solutions to tackle encrypted traffic classification and network intrusion detection challenges in resource-constrained environments.
Abstract:Machine learning models assume that training and test samples are drawn from the same distribution. As such, significant differences between training and test distributions often lead to degradations in performance. We introduce Multiple Distribution Shift -- Aerial (MDS-A) -- a collection of inter-related datasets of the same aerial domain that are perturbed in different ways to better characterize the effects of out-of-distribution performance. Specifically, MDS-A is a set of simulated aerial datasets collected under different weather conditions. We include six datasets under different simulated weather conditions along with six baseline object-detection models, as well as several test datasets that are a mix of weather conditions that we show have significant differences from the training data. In this paper, we present characterizations of MDS-A, provide performance results for the baseline machine learning models (on both their specific training datasets and the test data), as well as results of the baselines after employing recent knowledge-engineering error-detection techniques (EDR) thought to improve out-of-distribution performance. The dataset is available at https://lab-v2.github.io/mdsa-dataset-website.
Abstract:Metacognition is the concept of reasoning about an agent's own internal processes, and it has recently received renewed attention with respect to artificial intelligence (AI) and, more specifically, machine learning systems. This paper reviews a hybrid-AI approach known as "error detecting and correcting rules" (EDCR) that allows for the learning of rules to correct perceptual (e.g., neural) models. Additionally, we introduce a probabilistic framework that adds rigor to prior empirical studies, and we use this framework to prove results on necessary and sufficient conditions for metacognitive improvement, as well as limits to the approach. A set of future
Abstract:Autonomous systems are increasingly expected to operate in the presence of adversaries, though an adversary may infer sensitive information simply by observing a system, without even needing to interact with it. Therefore, in this work we present a deceptive decision-making framework that not only conceals sensitive information, but in fact actively misleads adversaries about it. We model autonomous systems as Markov decision processes, and we consider adversaries that attempt to infer their reward functions using inverse reinforcement learning. To counter such efforts, we present two regularization strategies for policy synthesis problems that actively deceive an adversary about a system's underlying rewards. The first form of deception is ``diversionary'', and it leads an adversary to draw any false conclusion about what the system's reward function is. The second form of deception is ``targeted'', and it leads an adversary to draw a specific false conclusion about what the system's reward function is. We then show how each form of deception can be implemented in policy optimization problems, and we analytically bound the loss in total accumulated reward that is induced by deception. Next, we evaluate these developments in a multi-agent sequential decision-making problem with one real agent and multiple decoys. We show that diversionary deception can cause the adversary to believe that the most important agent is the least important, while attaining a total accumulated reward that is $98.83\%$ of its optimal, non-deceptive value. Similarly, we show that targeted deception can make any decoy appear to be the most important agent, while still attaining a total accumulated reward that is $99.25\%$ of its optimal, non-deceptive value.
Abstract:In this paper, we present a dynamic semantic clustering approach inspired by the Chinese Restaurant Process, aimed at addressing uncertainty in the inference of Large Language Models (LLMs). We quantify uncertainty of an LLM on a given query by calculating entropy of the generated semantic clusters. Further, we propose leveraging the (negative) likelihood of these clusters as the (non)conformity score within Conformal Prediction framework, allowing the model to predict a set of responses instead of a single output, thereby accounting for uncertainty in its predictions. We demonstrate the effectiveness of our uncertainty quantification (UQ) technique on two well known question answering benchmarks, COQA and TriviaQA, utilizing two LLMs, Llama2 and Mistral. Our approach achieves SOTA performance in UQ, as assessed by metrics such as AUROC, AUARC, and AURAC. The proposed conformal predictor is also shown to produce smaller prediction sets while maintaining the same probabilistic guarantee of including the correct response, in comparison to existing SOTA conformal prediction baseline.
Abstract:Deep Reinforcement Learning (DRL) algorithms have achieved great success in solving many challenging tasks while their black-box nature hinders interpretability and real-world applicability, making it difficult for human experts to interpret and understand DRL policies. Existing works on interpretable reinforcement learning have shown promise in extracting decision tree (DT) based policies from DRL policies with most focus on the single-agent settings while prior attempts to introduce DT policies in multi-agent scenarios mainly focus on heuristic designs which do not provide any quantitative guarantees on the expected return. In this paper, we establish an upper bound on the return gap between the oracle expert policy and an optimal decision tree policy. This enables us to recast the DT extraction problem into a novel non-euclidean clustering problem over the local observation and action values space of each agent, with action values as cluster labels and the upper bound on the return gap as clustering loss. Both the algorithm and the upper bound are extended to multi-agent decentralized DT extractions by an iteratively-grow-DT procedure guided by an action-value function conditioned on the current DTs of other agents. Further, we propose the Return-Gap-Minimization Decision Tree (RGMDT) algorithm, which is a surprisingly simple design and is integrated with reinforcement learning through the utilization of a novel Regularized Information Maximization loss. Evaluations on tasks like D4RL show that RGMDT significantly outperforms heuristic DT-based baselines and can achieve nearly optimal returns under given DT complexity constraints (e.g., maximum number of DT nodes).
Abstract:In the rapidly evolving field of cybersecurity, the integration of flow-level and packet-level information for real-time intrusion detection remains a largely untapped area of research. This paper introduces "XG-NID," a novel framework that, to the best of our knowledge, is the first to fuse flow-level and packet-level data within a heterogeneous graph structure, offering a comprehensive analysis of network traffic. Leveraging a heterogeneous graph neural network (GNN) with graph-level classification, XG-NID uniquely enables real-time inference while effectively capturing the intricate relationships between flow and packet payload data. Unlike traditional GNN-based methodologies that predominantly analyze historical data, XG-NID is designed to accommodate the heterogeneous nature of network traffic, providing a robust and real-time defense mechanism. Our framework extends beyond mere classification; it integrates Large Language Models (LLMs) to generate detailed, human-readable explanations and suggest potential remedial actions, ensuring that the insights produced are both actionable and comprehensible. Additionally, we introduce a new set of flow features based on temporal information, further enhancing the contextual and explainable inferences provided by our model. To facilitate practical application and accessibility, we developed "GNN4ID," an open-source tool that enables the extraction and transformation of raw network traffic into the proposed heterogeneous graph structure, seamlessly integrating flow and packet-level data. Our comprehensive quantitative comparative analysis demonstrates that XG-NID achieves an F1 score of 97\% in multi-class classification, outperforming existing baseline and state-of-the-art methods. This sets a new standard in Network Intrusion Detection Systems by combining innovative data fusion with enhanced interpretability and real-time capabilities.
Abstract:The prevailing approaches in Network Intrusion Detection Systems (NIDS) are often hampered by issues such as high resource consumption, significant computational demands, and poor interpretability. Furthermore, these systems generally struggle to identify novel, rapidly changing cyber threats. This paper delves into the potential of incorporating Neurosymbolic Artificial Intelligence (NSAI) into NIDS, combining deep learning's data-driven strengths with symbolic AI's logical reasoning to tackle the dynamic challenges in cybersecurity, which also includes detailed NSAI techniques introduction for cyber professionals to explore the potential strengths of NSAI in NIDS. The inclusion of NSAI in NIDS marks potential advancements in both the detection and interpretation of intricate network threats, benefiting from the robust pattern recognition of neural networks and the interpretive prowess of symbolic reasoning. By analyzing network traffic data types and machine learning architectures, we illustrate NSAI's distinctive capability to offer more profound insights into network behavior, thereby improving both detection performance and the adaptability of the system. This merging of technologies not only enhances the functionality of traditional NIDS but also sets the stage for future developments in building more resilient, interpretable, and dynamic defense mechanisms against advanced cyber threats. The continued progress in this area is poised to transform NIDS into a system that is both responsive to known threats and anticipatory of emerging, unseen ones.
Abstract:One key challenge in backdoor attacks against large foundation models is the resource limits. Backdoor attacks usually require retraining the target model, which is impractical for very large foundation models. Existing backdoor attacks are mainly designed for supervised classifiers or small foundation models (e.g., BERT). None of these attacks has successfully compromised a very large foundation model, such as Llama-3-70B, especially with limited computational resources. In this paper, we propose TrojFM, a novel backdoor attack tailored for very large foundation models. Our primary technical contribution is the development of a novel backdoor injection method. This method forces a backdoored model to generate similar hidden representations for poisoned inputs regardless of their actual semantics. Our approach injects such backdoors by fine-tuning only a very small proportion of model parameters. This enables TrojFM to efficiently launch downstream task-agnostic backdoor attacks against very large foundation models under limited computational resources. Moreover, we optimize the fine-tuning process with our customized QLoRA technique, enabling launching our attack via only~\textit{one A100 GPU}. Furthermore, we design a new trigger injection method to ensure our attack stealthiness. Through extensive experiments, we first demonstrate that TrojFM can launch effective backdoor attacks against widely used large GPT-style models without jeopardizing their normal functionalities (and outperforming existing attacks on BERT-style models). Furthermore, we show that TrojFM is resilient to SOTA defenses and is insensitive to changes in key hyper-parameters. Finally, we conduct a resource analysis to quantify that our method can significantly save computational and memory costs compared to existing backdoor attacks.
Abstract:Many cybersecurity problems that require real-time decision-making based on temporal observations can be abstracted as a sequence modeling problem, e.g., network intrusion detection from a sequence of arriving packets. Existing approaches like reinforcement learning may not be suitable for such cybersecurity decision problems, since the Markovian property may not necessarily hold and the underlying network states are often not observable. In this paper, we cast the problem of real-time network intrusion detection as casual sequence modeling and draw upon the power of the transformer architecture for real-time decision-making. By conditioning a causal decision transformer on past trajectories, consisting of the rewards, network packets, and detection decisions, our proposed framework will generate future detection decisions to achieve the desired return. It enables decision transformers to be applied to real-time network intrusion detection, as well as a novel tradeoff between the accuracy and timeliness of detection. The proposed solution is evaluated on public network intrusion detection datasets and outperforms several baseline algorithms using reinforcement learning and sequence modeling, in terms of detection accuracy and timeliness.