Abstract:In this paper, we present a dynamic semantic clustering approach inspired by the Chinese Restaurant Process, aimed at addressing uncertainty in the inference of Large Language Models (LLMs). We quantify uncertainty of an LLM on a given query by calculating entropy of the generated semantic clusters. Further, we propose leveraging the (negative) likelihood of these clusters as the (non)conformity score within Conformal Prediction framework, allowing the model to predict a set of responses instead of a single output, thereby accounting for uncertainty in its predictions. We demonstrate the effectiveness of our uncertainty quantification (UQ) technique on two well known question answering benchmarks, COQA and TriviaQA, utilizing two LLMs, Llama2 and Mistral. Our approach achieves SOTA performance in UQ, as assessed by metrics such as AUROC, AUARC, and AURAC. The proposed conformal predictor is also shown to produce smaller prediction sets while maintaining the same probabilistic guarantee of including the correct response, in comparison to existing SOTA conformal prediction baseline.
Abstract:Deep Reinforcement Learning (DRL) algorithms have achieved great success in solving many challenging tasks while their black-box nature hinders interpretability and real-world applicability, making it difficult for human experts to interpret and understand DRL policies. Existing works on interpretable reinforcement learning have shown promise in extracting decision tree (DT) based policies from DRL policies with most focus on the single-agent settings while prior attempts to introduce DT policies in multi-agent scenarios mainly focus on heuristic designs which do not provide any quantitative guarantees on the expected return. In this paper, we establish an upper bound on the return gap between the oracle expert policy and an optimal decision tree policy. This enables us to recast the DT extraction problem into a novel non-euclidean clustering problem over the local observation and action values space of each agent, with action values as cluster labels and the upper bound on the return gap as clustering loss. Both the algorithm and the upper bound are extended to multi-agent decentralized DT extractions by an iteratively-grow-DT procedure guided by an action-value function conditioned on the current DTs of other agents. Further, we propose the Return-Gap-Minimization Decision Tree (RGMDT) algorithm, which is a surprisingly simple design and is integrated with reinforcement learning through the utilization of a novel Regularized Information Maximization loss. Evaluations on tasks like D4RL show that RGMDT significantly outperforms heuristic DT-based baselines and can achieve nearly optimal returns under given DT complexity constraints (e.g., maximum number of DT nodes).
Abstract:In the rapidly evolving field of cybersecurity, the integration of flow-level and packet-level information for real-time intrusion detection remains a largely untapped area of research. This paper introduces "XG-NID," a novel framework that, to the best of our knowledge, is the first to fuse flow-level and packet-level data within a heterogeneous graph structure, offering a comprehensive analysis of network traffic. Leveraging a heterogeneous graph neural network (GNN) with graph-level classification, XG-NID uniquely enables real-time inference while effectively capturing the intricate relationships between flow and packet payload data. Unlike traditional GNN-based methodologies that predominantly analyze historical data, XG-NID is designed to accommodate the heterogeneous nature of network traffic, providing a robust and real-time defense mechanism. Our framework extends beyond mere classification; it integrates Large Language Models (LLMs) to generate detailed, human-readable explanations and suggest potential remedial actions, ensuring that the insights produced are both actionable and comprehensible. Additionally, we introduce a new set of flow features based on temporal information, further enhancing the contextual and explainable inferences provided by our model. To facilitate practical application and accessibility, we developed "GNN4ID," an open-source tool that enables the extraction and transformation of raw network traffic into the proposed heterogeneous graph structure, seamlessly integrating flow and packet-level data. Our comprehensive quantitative comparative analysis demonstrates that XG-NID achieves an F1 score of 97\% in multi-class classification, outperforming existing baseline and state-of-the-art methods. This sets a new standard in Network Intrusion Detection Systems by combining innovative data fusion with enhanced interpretability and real-time capabilities.
Abstract:The prevailing approaches in Network Intrusion Detection Systems (NIDS) are often hampered by issues such as high resource consumption, significant computational demands, and poor interpretability. Furthermore, these systems generally struggle to identify novel, rapidly changing cyber threats. This paper delves into the potential of incorporating Neurosymbolic Artificial Intelligence (NSAI) into NIDS, combining deep learning's data-driven strengths with symbolic AI's logical reasoning to tackle the dynamic challenges in cybersecurity, which also includes detailed NSAI techniques introduction for cyber professionals to explore the potential strengths of NSAI in NIDS. The inclusion of NSAI in NIDS marks potential advancements in both the detection and interpretation of intricate network threats, benefiting from the robust pattern recognition of neural networks and the interpretive prowess of symbolic reasoning. By analyzing network traffic data types and machine learning architectures, we illustrate NSAI's distinctive capability to offer more profound insights into network behavior, thereby improving both detection performance and the adaptability of the system. This merging of technologies not only enhances the functionality of traditional NIDS but also sets the stage for future developments in building more resilient, interpretable, and dynamic defense mechanisms against advanced cyber threats. The continued progress in this area is poised to transform NIDS into a system that is both responsive to known threats and anticipatory of emerging, unseen ones.
Abstract:One key challenge in backdoor attacks against large foundation models is the resource limits. Backdoor attacks usually require retraining the target model, which is impractical for very large foundation models. Existing backdoor attacks are mainly designed for supervised classifiers or small foundation models (e.g., BERT). None of these attacks has successfully compromised a very large foundation model, such as Llama-3-70B, especially with limited computational resources. In this paper, we propose TrojFM, a novel backdoor attack tailored for very large foundation models. Our primary technical contribution is the development of a novel backdoor injection method. This method forces a backdoored model to generate similar hidden representations for poisoned inputs regardless of their actual semantics. Our approach injects such backdoors by fine-tuning only a very small proportion of model parameters. This enables TrojFM to efficiently launch downstream task-agnostic backdoor attacks against very large foundation models under limited computational resources. Moreover, we optimize the fine-tuning process with our customized QLoRA technique, enabling launching our attack via only~\textit{one A100 GPU}. Furthermore, we design a new trigger injection method to ensure our attack stealthiness. Through extensive experiments, we first demonstrate that TrojFM can launch effective backdoor attacks against widely used large GPT-style models without jeopardizing their normal functionalities (and outperforming existing attacks on BERT-style models). Furthermore, we show that TrojFM is resilient to SOTA defenses and is insensitive to changes in key hyper-parameters. Finally, we conduct a resource analysis to quantify that our method can significantly save computational and memory costs compared to existing backdoor attacks.
Abstract:Many cybersecurity problems that require real-time decision-making based on temporal observations can be abstracted as a sequence modeling problem, e.g., network intrusion detection from a sequence of arriving packets. Existing approaches like reinforcement learning may not be suitable for such cybersecurity decision problems, since the Markovian property may not necessarily hold and the underlying network states are often not observable. In this paper, we cast the problem of real-time network intrusion detection as casual sequence modeling and draw upon the power of the transformer architecture for real-time decision-making. By conditioning a causal decision transformer on past trajectories, consisting of the rewards, network packets, and detection decisions, our proposed framework will generate future detection decisions to achieve the desired return. It enables decision transformers to be applied to real-time network intrusion detection, as well as a novel tradeoff between the accuracy and timeliness of detection. The proposed solution is evaluated on public network intrusion detection datasets and outperforms several baseline algorithms using reinforcement learning and sequence modeling, in terms of detection accuracy and timeliness.
Abstract:Deep Learning (DL) based methods have shown great promise in network intrusion detection by identifying malicious network traffic behavior patterns with high accuracy, but their applications to real-time, packet-level detections in high-speed communication networks are challenging due to the high computation time and resource requirements of Deep Neural Networks (DNNs), as well as lack of explainability. To this end, we propose a packet-level network intrusion detection solution that makes novel use of Recurrent Autoencoders to integrate an arbitrary-length sequence of packets into a more compact joint feature embedding, which is fed into a DNN-based classifier. To enable explainability and support real-time detections at micro-second speed, we further develop a Software-Hardware Co-Design approach to efficiently realize the proposed solution by converting the learned detection policies into decision trees and implementing them using an emerging architecture based on memristor devices. By jointly optimizing associated software and hardware constraints, we show that our approach leads to an extremely efficient, real-time solution with high detection accuracy at the packet level. Evaluation results on real-world datasets (e.g., UNSW and CIC-IDS datasets) demonstrate nearly three-nines detection accuracy with a substantial speedup of nearly four orders of magnitude.
Abstract:The widespread integration of Internet of Things (IoT) devices across all facets of life has ushered in an era of interconnectedness, creating new avenues for cybersecurity challenges and underscoring the need for robust intrusion detection systems. However, traditional security systems are designed with a closed-world perspective and often face challenges in dealing with the ever-evolving threat landscape, where new and unfamiliar attacks are constantly emerging. In this paper, we introduce a framework aimed at mitigating the open set recognition (OSR) problem in the realm of Network Intrusion Detection Systems (NIDS) tailored for IoT environments. Our framework capitalizes on image-based representations of packet-level data, extracting spatial and temporal patterns from network traffic. Additionally, we integrate stacking and sub-clustering techniques, enabling the identification of unknown attacks by effectively modeling the complex and diverse nature of benign behavior. The empirical results prominently underscore the framework's efficacy, boasting an impressive 88\% detection rate for previously unseen attacks when compared against existing approaches and recent advancements. Future work will perform extensive experimentation across various openness levels and attack scenarios, further strengthening the adaptability and performance of our proposed solution in safeguarding IoT environments.
Abstract:Generative large language models (LLMs) with instruct training such as GPT-4 can follow human-provided instruction prompts and generate human-like responses to these prompts. Apart from natural language responses, they have also been found to be effective at generating formal artifacts such as code, plans, and logical specifications from natural language prompts. Despite their remarkably improved accuracy, these models are still known to produce factually incorrect or contextually inappropriate results despite their syntactic coherence - a phenomenon often referred to as hallucination. This limitation makes it difficult to use these models to synthesize formal artifacts that are used in safety-critical applications. Unlike tasks such as text summarization and question-answering, bugs in code, plan, and other formal artifacts produced by LLMs can be catastrophic. We posit that we can use the satisfiability modulo theory (SMT) solvers as deductive reasoning engines to analyze the generated solutions from the LLMs, produce counterexamples when the solutions are incorrect, and provide that feedback to the LLMs exploiting the dialog capability of instruct-trained LLMs. This interaction between inductive LLMs and deductive SMT solvers can iteratively steer the LLM to generate the correct response. In our experiments, we use planning over the domain of blocks as our synthesis task for evaluating our approach. We use GPT-4, GPT3.5 Turbo, Davinci, Curie, Babbage, and Ada as the LLMs and Z3 as the SMT solver. Our method allows the user to communicate the planning problem in natural language; even the formulation of queries to SMT solvers is automatically generated from natural language. Thus, the proposed technique can enable non-expert users to describe their problems in natural language, and the combination of LLMs and SMT solvers can produce provably correct solutions.
Abstract:Recent advancements in artificial intelligence (AI) and machine learning (ML) algorithms, coupled with the availability of faster computing infrastructure, have enhanced the security posture of cybersecurity operations centers (defenders) through the development of ML-aided network intrusion detection systems (NIDS). Concurrently, the abilities of adversaries to evade security have also increased with the support of AI/ML models. Therefore, defenders need to proactively prepare for evasion attacks that exploit the detection mechanisms of NIDS. Recent studies have found that the perturbation of flow-based and packet-based features can deceive ML models, but these approaches have limitations. Perturbations made to the flow-based features are difficult to reverse-engineer, while samples generated with perturbations to the packet-based features are not playable. Our methodological framework, Deep PackGen, employs deep reinforcement learning to generate adversarial packets and aims to overcome the limitations of approaches in the literature. By taking raw malicious network packets as inputs and systematically making perturbations on them, Deep PackGen camouflages them as benign packets while still maintaining their functionality. In our experiments, using publicly available data, Deep PackGen achieved an average adversarial success rate of 66.4\% against various ML models and across different attack types. Our investigation also revealed that more than 45\% of the successful adversarial samples were out-of-distribution packets that evaded the decision boundaries of the classifiers. The knowledge gained from our study on the adversary's ability to make specific evasive perturbations to different types of malicious packets can help defenders enhance the robustness of their NIDS against evolving adversarial attacks.