Abstract:The increasing demand for robust security solutions across various industries has made Video Anomaly Detection (VAD) a critical task in applications such as intelligent surveillance, evidence investigation, and violence detection. Traditional approaches to VAD often rely on finetuning large pre-trained models, which can be computationally expensive and impractical for real-time or resource-constrained environments. To address this, MissionGNN introduced a more efficient method by training a graph neural network (GNN) using a fixed knowledge graph (KG) derived from large language models (LLMs) like GPT-4. While this approach demonstrated significant efficiency in computational power and memory, it faces limitations in dynamic environments where frequent updates to the KG are necessary due to evolving behavior trends and shifting data patterns. These updates typically require cloud-based computation, posing challenges for edge computing applications. In this paper, we propose a novel framework that facilitates continuous KG adaptation directly on edge devices, overcoming the limitations of cloud dependency. Our method dynamically modifies the KG through a three-phase process: pruning, alternating, and creating nodes, enabling real-time adaptation to changing data trends. This continuous learning approach enhances the robustness of anomaly detection models, making them more suitable for deployment in dynamic and resource-constrained environments.
Abstract:Video crime detection is a significant application of computer vision and artificial intelligence. However, existing datasets primarily focus on detecting severe crimes by analyzing entire video clips, often neglecting the precursor activities (i.e., privacy violations) that could potentially prevent these crimes. To address this limitation, we present PV-VTT (Privacy Violation Video To Text), a unique multimodal dataset aimed at identifying privacy violations. PV-VTT provides detailed annotations for both video and text in scenarios. To ensure the privacy of individuals in the videos, we only provide video feature vectors, avoiding the release of any raw video data. This privacy-focused approach allows researchers to use the dataset while protecting participant confidentiality. Recognizing that privacy violations are often ambiguous and context-dependent, we propose a Graph Neural Network (GNN)-based video description model. Our model generates a GNN-based prompt with image for Large Language Model (LLM), which deliver cost-effective and high-quality video descriptions. By leveraging a single video frame along with relevant text, our method reduces the number of input tokens required, maintaining descriptive quality while optimizing LLM API-usage. Extensive experiments validate the effectiveness and interpretability of our approach in video description tasks and flexibility of our PV-VTT dataset.
Abstract:Neuro-symbolic artificial intelligence (AI) excels at learning from noisy and generalized patterns, conducting logical inferences, and providing interpretable reasoning. Comprising a 'neuro' component for feature extraction and a 'symbolic' component for decision-making, neuro-symbolic AI has yet to fully benefit from efficient hardware accelerators. Additionally, current hardware struggles to accommodate applications requiring dynamic resource allocation between these two components. To address these challenges-and mitigate the typical data-transfer bottleneck of classical Von Neumann architectures-we propose a ferroelectric charge-domain compute-in-memory (CiM) array as the foundational processing element for neuro-symbolic AI. This array seamlessly handles both the critical multiply-accumulate (MAC) operations of the 'neuro' workload and the parallel associative search operations of the 'symbolic' workload. To enable this approach, we introduce an innovative 1FeFET-1C cell, combining a ferroelectric field-effect transistor (FeFET) with a capacitor. This design, overcomes the destructive sensing limitations of DRAM in CiM applications, while capable of capitalizing decades of DRAM expertise with a similar cell structure as DRAM, achieves high immunity against FeFET variation-crucial for neuro-symbolic AI-and demonstrates superior energy efficiency. The functionalities of our design have been successfully validated through SPICE simulations and prototype fabrication and testing. Our hardware platform has been benchmarked in executing typical neuro-symbolic AI reasoning tasks, showing over 2x improvement in latency and 1000x improvement in energy efficiency compared to GPU-based implementations.
Abstract:Vision Transformers (ViTs) have emerged as the backbone of many segmentation models, consistently achieving state-of-the-art (SOTA) performance. However, their success comes at a significant computational cost. Image token pruning is one of the most effective strategies to address this complexity. However, previous approaches fall short when applied to more complex task-oriented segmentation (TOS), where the class of each image patch is not predefined but dependent on the specific input task. This work introduces the Vision Language Guided Token Pruning (VLTP), a novel token pruning mechanism that can accelerate ViTbased segmentation models, particularly for TOS guided by multi-modal large language model (MLLM). We argue that ViT does not need to process every image token through all of its layers only the tokens related to reasoning tasks are necessary. We design a new pruning decoder to take both image tokens and vision-language guidance as input to predict the relevance of each image token to the task. Only image tokens with high relevance are passed to deeper layers of the ViT. Experiments show that the VLTP framework reduces the computational costs of ViT by approximately 25% without performance degradation and by around 40% with only a 1% performance drop.
Abstract:Link prediction is a crucial task in network analysis, but it has been shown to be prone to biased predictions, particularly when links are unfairly predicted between nodes from different sensitive groups. In this paper, we study the fair link prediction problem, which aims to ensure that the predicted link probability is independent of the sensitive attributes of the connected nodes. Existing methods typically incorporate debiasing techniques within graph embeddings to mitigate this issue. However, training on large real-world graphs is already challenging, and adding fairness constraints can further complicate the process. To overcome this challenge, we propose FairLink, a method that learns a fairness-enhanced graph to bypass the need for debiasing during the link predictor's training. FairLink maintains link prediction accuracy by ensuring that the enhanced graph follows a training trajectory similar to that of the original input graph. Meanwhile, it enhances fairness by minimizing the absolute difference in link probabilities between node pairs within the same sensitive group and those between node pairs from different sensitive groups. Our extensive experiments on multiple large-scale graphs demonstrate that FairLink not only promotes fairness but also often achieves link prediction accuracy comparable to baseline methods. Most importantly, the enhanced graph exhibits strong generalizability across different GNN architectures.
Abstract:Human pose estimation (HPE) is crucial for various applications. However, deploying HPE algorithms in surveillance contexts raises significant privacy concerns due to the potential leakage of sensitive personal information (SPI) such as facial features, and ethnicity. Existing privacy-enhancing methods often compromise either privacy or performance, or they require costly additional modalities. We propose a novel privacy-enhancing system that generates privacy-enhanced portraits while maintaining high HPE performance. Our key innovations include the reversible recovery of SPI for authorized personnel and the preservation of contextual information. By jointly optimizing a privacy-enhancing module, a privacy recovery module, and a pose estimator, our system ensures robust privacy protection, efficient SPI recovery, and high-performance HPE. Experimental results demonstrate the system's robust performance in privacy enhancement, SPI recovery, and HPE.
Abstract:Workplace accidents due to personal protective equipment (PPE) non-compliance raise serious safety concerns and lead to legal liabilities, financial penalties, and reputational damage. While object detection models have shown the capability to address this issue by identifying safety items, most existing models, such as YOLO, Faster R-CNN, and SSD, are limited in verifying the fine-grained attributes of PPE across diverse workplace scenarios. Vision language models (VLMs) are gaining traction for detection tasks by leveraging the synergy between visual and textual information, offering a promising solution to traditional object detection limitations in PPE recognition. Nonetheless, VLMs face challenges in consistently verifying PPE attributes due to the complexity and variability of workplace environments, requiring them to interpret context-specific language and visual cues simultaneously. We introduce Clip2Safety, an interpretable detection framework for diverse workplace safety compliance, which comprises four main modules: scene recognition, the visual prompt, safety items detection, and fine-grained verification. The scene recognition identifies the current scenario to determine the necessary safety gear. The visual prompt formulates the specific visual prompts needed for the detection process. The safety items detection identifies whether the required safety gear is being worn according to the specified scenario. Lastly, the fine-grained verification assesses whether the worn safety equipment meets the fine-grained attribute requirements. We conduct real-world case studies across six different scenarios. The results show that Clip2Safety not only demonstrates an accuracy improvement over state-of-the-art question-answering based VLMs but also achieves inference times two hundred times faster.
Abstract:In-situ sensing, in conjunction with learning models, presents a unique opportunity to address persistent defect issues in Additive Manufacturing (AM) processes. However, this integration introduces significant data privacy concerns, such as data leakage, sensor data compromise, and model inversion attacks, revealing critical details about part design, material composition, and machine parameters. Differential Privacy (DP) models, which inject noise into data under mathematical guarantees, offer a nuanced balance between data utility and privacy by obscuring traces of sensing data. However, the introduction of noise into learning models, often functioning as black boxes, complicates the prediction of how specific noise levels impact model accuracy. This study introduces the Differential Privacy-HyperDimensional computing (DP-HD) framework, leveraging the explainability of the vector symbolic paradigm to predict the noise impact on the accuracy of in-situ monitoring, safeguarding sensitive data while maintaining operational efficiency. Experimental results on real-world high-speed melt pool data of AM for detecting overhang anomalies demonstrate that DP-HD achieves superior operational efficiency, prediction accuracy, and robust privacy protection, outperforming state-of-the-art Machine Learning (ML) models. For example, when implementing the same level of privacy protection (with a privacy budget set at 1), our model achieved an accuracy of 94.43%, surpassing the performance of traditional models such as ResNet50 (52.30%), GoogLeNet (23.85%), AlexNet (55.78%), DenseNet201 (69.13%), and EfficientNet B2 (40.81%). Notably, DP-HD maintains high performance under substantial noise additions designed to enhance privacy, unlike current models that suffer significant accuracy declines under high privacy constraints.
Abstract:In the context of escalating safety concerns across various domains, the tasks of Video Anomaly Detection (VAD) and Video Anomaly Recognition (VAR) have emerged as critically important for applications in intelligent surveillance, evidence investigation, violence alerting, etc. These tasks, aimed at identifying and classifying deviations from normal behavior in video data, face significant challenges due to the rarity of anomalies which leads to extremely imbalanced data and the impracticality of extensive frame-level data annotation for supervised learning. This paper introduces a novel hierarchical graph neural network (GNN) based model MissionGNN that addresses these challenges by leveraging a state-of-the-art large language model and a comprehensive knowledge graph for efficient weakly supervised learning in VAR. Our approach circumvents the limitations of previous methods by avoiding heavy gradient computations on large multimodal models and enabling fully frame-level training without fixed video segmentation. Utilizing automated, mission-specific knowledge graph generation, our model provides a practical and efficient solution for real-time video analysis without the constraints of previous segmentation-based or multimodal approaches. Experimental validation on benchmark datasets demonstrates our model's performance in VAD and VAR, highlighting its potential to redefine the landscape of anomaly detection and recognition in video surveillance systems.
Abstract:This paper presents a quantum algorithm for efficiently decoding hypervectors, a crucial process in extracting atomic elements from hypervectors - an essential task in Hyperdimensional Computing (HDC) models for interpretable learning and information retrieval. HDC employs high-dimensional vectors and efficient operators to encode and manipulate information, representing complex objects from atomic concepts. When one attempts to decode a hypervector that is the product (binding) of multiple hypervectors, the factorization becomes prohibitively costly with classical optimization-based methods and specialized recurrent networks, an inherent consequence of the binding operation. We propose HDQF, an innovative quantum computing approach, to address this challenge. By exploiting parallels between HDC and quantum computing and capitalizing on quantum algorithms' speedup capabilities, HDQF encodes potential factors as a quantum superposition using qubit states and bipolar vector representation. This yields a quadratic speedup over classical search methods and effectively mitigates Hypervector Factorization capacity issues.