Abstract:Link prediction is a crucial task in network analysis, but it has been shown to be prone to biased predictions, particularly when links are unfairly predicted between nodes from different sensitive groups. In this paper, we study the fair link prediction problem, which aims to ensure that the predicted link probability is independent of the sensitive attributes of the connected nodes. Existing methods typically incorporate debiasing techniques within graph embeddings to mitigate this issue. However, training on large real-world graphs is already challenging, and adding fairness constraints can further complicate the process. To overcome this challenge, we propose FairLink, a method that learns a fairness-enhanced graph to bypass the need for debiasing during the link predictor's training. FairLink maintains link prediction accuracy by ensuring that the enhanced graph follows a training trajectory similar to that of the original input graph. Meanwhile, it enhances fairness by minimizing the absolute difference in link probabilities between node pairs within the same sensitive group and those between node pairs from different sensitive groups. Our extensive experiments on multiple large-scale graphs demonstrate that FairLink not only promotes fairness but also often achieves link prediction accuracy comparable to baseline methods. Most importantly, the enhanced graph exhibits strong generalizability across different GNN architectures.
Abstract:Vision Transformers (ViTs) have emerged as the backbone of many segmentation models, consistently achieving state-of-the-art (SOTA) performance. However, their success comes at a significant computational cost. Image token pruning is one of the most effective strategies to address this complexity. However, previous approaches fall short when applied to more complex task-oriented segmentation (TOS), where the class of each image patch is not predefined but dependent on the specific input task. This work introduces the Vision Language Guided Token Pruning (VLTP), a novel token pruning mechanism that can accelerate ViTbased segmentation models, particularly for TOS guided by multi-modal large language model (MLLM). We argue that ViT does not need to process every image token through all of its layers only the tokens related to reasoning tasks are necessary. We design a new pruning decoder to take both image tokens and vision-language guidance as input to predict the relevance of each image token to the task. Only image tokens with high relevance are passed to deeper layers of the ViT. Experiments show that the VLTP framework reduces the computational costs of ViT by approximately 25% without performance degradation and by around 40% with only a 1% performance drop.
Abstract:Human pose estimation (HPE) is crucial for various applications. However, deploying HPE algorithms in surveillance contexts raises significant privacy concerns due to the potential leakage of sensitive personal information (SPI) such as facial features, and ethnicity. Existing privacy-enhancing methods often compromise either privacy or performance, or they require costly additional modalities. We propose a novel privacy-enhancing system that generates privacy-enhanced portraits while maintaining high HPE performance. Our key innovations include the reversible recovery of SPI for authorized personnel and the preservation of contextual information. By jointly optimizing a privacy-enhancing module, a privacy recovery module, and a pose estimator, our system ensures robust privacy protection, efficient SPI recovery, and high-performance HPE. Experimental results demonstrate the system's robust performance in privacy enhancement, SPI recovery, and HPE.
Abstract:Workplace accidents due to personal protective equipment (PPE) non-compliance raise serious safety concerns and lead to legal liabilities, financial penalties, and reputational damage. While object detection models have shown the capability to address this issue by identifying safety items, most existing models, such as YOLO, Faster R-CNN, and SSD, are limited in verifying the fine-grained attributes of PPE across diverse workplace scenarios. Vision language models (VLMs) are gaining traction for detection tasks by leveraging the synergy between visual and textual information, offering a promising solution to traditional object detection limitations in PPE recognition. Nonetheless, VLMs face challenges in consistently verifying PPE attributes due to the complexity and variability of workplace environments, requiring them to interpret context-specific language and visual cues simultaneously. We introduce Clip2Safety, an interpretable detection framework for diverse workplace safety compliance, which comprises four main modules: scene recognition, the visual prompt, safety items detection, and fine-grained verification. The scene recognition identifies the current scenario to determine the necessary safety gear. The visual prompt formulates the specific visual prompts needed for the detection process. The safety items detection identifies whether the required safety gear is being worn according to the specified scenario. Lastly, the fine-grained verification assesses whether the worn safety equipment meets the fine-grained attribute requirements. We conduct real-world case studies across six different scenarios. The results show that Clip2Safety not only demonstrates an accuracy improvement over state-of-the-art question-answering based VLMs but also achieves inference times two hundred times faster.
Abstract:Detecting marine objects inshore presents challenges owing to algorithmic intricacies and complexities in system deployment. We propose a difficulty-aware edge-cloud collaborative sensing system that splits the task into object localization and fine-grained classification. Objects are classified either at the edge or within the cloud, based on their estimated difficulty. The framework comprises a low-power device-tailored front-end model for object localization, classification, and difficulty estimation, along with a transformer-graph convolutional network-based back-end model for fine-grained classification. Our system demonstrates superior performance (mAP@0.5 +4.3%}) on widely used marine object detection datasets, significantly reducing both data transmission volume (by 95.43%) and energy consumption (by 72.7%}) at the system level. We validate the proposed system across various embedded system platforms and in real-world scenarios involving drone deployment.
Abstract:Task-oriented object detection aims to find objects suitable for accomplishing specific tasks. As a challenging task, it requires simultaneous visual data processing and reasoning under ambiguous semantics. Recent solutions are mainly all-in-one models. However, the object detection backbones are pre-trained without text supervision. Thus, to incorporate task requirements, their intricate models undergo extensive learning on a highly imbalanced and scarce dataset, resulting in capped performance, laborious training, and poor generalizability. In contrast, we propose TaskCLIP, a more natural two-stage design composed of general object detection and task-guided object selection. Particularly for the latter, we resort to the recently successful large Vision-Language Models (VLMs) as our backbone, which provides rich semantic knowledge and a uniform embedding space for images and texts. Nevertheless, the naive application of VLMs leads to sub-optimal quality, due to the misalignment between embeddings of object images and their visual attributes, which are mainly adjective phrases. To this end, we design a transformer-based aligner after the pre-trained VLMs to re-calibrate both embeddings. Finally, we employ a trainable score function to post-process the VLM matching results for object selection. Experimental results demonstrate that our TaskCLIP outperforms the state-of-the-art DETR-based model TOIST by 3.5% and only requires a single NVIDIA RTX 4090 for both training and inference.
Abstract:In recent times, a plethora of hardware accelerators have been put forth for graph learning applications such as vertex classification and graph classification. However, previous works have paid little attention to Knowledge Graph Completion (KGC), a task that is well-known for its significantly higher algorithm complexity. The state-of-the-art KGC solutions based on graph convolution neural network (GCN) involve extensive vertex/relation embedding updates and complicated score functions, which are inherently cumbersome for acceleration. As a result, existing accelerator designs are no longer optimal, and a novel algorithm-hardware co-design for KG reasoning is needed. Recently, brain-inspired HyperDimensional Computing (HDC) has been introduced as a promising solution for lightweight machine learning, particularly for graph learning applications. In this paper, we leverage HDC for an intrinsically more efficient and acceleration-friendly KGC algorithm. We also co-design an acceleration framework named HDReason targeting FPGA platforms. On the algorithm level, HDReason achieves a balance between high reasoning accuracy, strong model interpretability, and less computation complexity. In terms of architecture, HDReason offers reconfigurability, high training throughput, and low energy consumption. When compared with NVIDIA RTX 4090 GPU, the proposed accelerator achieves an average 10.6x speedup and 65x energy efficiency improvement. When conducting cross-models and cross-platforms comparison, HDReason yields an average 4.2x higher performance and 3.4x better energy efficiency with similar accuracy versus the state-of-the-art FPGA-based GCN training platform.
Abstract:Drawing inspiration from the outstanding learning capability of our human brains, Hyperdimensional Computing (HDC) emerges as a novel computing paradigm, and it leverages high-dimensional vector presentation and operations for brain-like lightweight Machine Learning (ML). Practical deployments of HDC have significantly enhanced the learning efficiency compared to current deep ML methods on a broad spectrum of applications. However, boosting the data efficiency of HDC classifiers in supervised learning remains an open question. In this paper, we introduce Hyperdimensional Efficient Active Learning (HEAL), a novel Active Learning (AL) framework tailored for HDC classification. HEAL proactively annotates unlabeled data points via uncertainty and diversity-guided acquisition, leading to a more efficient dataset annotation and lowering labor costs. Unlike conventional AL methods that only support classifiers built upon deep neural networks (DNN), HEAL operates without the need for gradient or probabilistic computations. This allows it to be effortlessly integrated with any existing HDC classifier architecture. The key design of HEAL is a novel approach for uncertainty estimation in HDC classifiers through a lightweight HDC ensemble with prior hypervectors. Additionally, by exploiting hypervectors as prototypes (i.e., compact representations), we develop an extra metric for HEAL to select diverse samples within each batch for annotation. Our evaluation shows that HEAL surpasses a diverse set of baselines in AL quality and achieves notably faster acquisition than many BNN-powered or diversity-guided AL methods, recording 11 times to 40,000 times speedup in acquisition runtime per batch.
Abstract:Applications in the Internet of Things (IoT) utilize machine learning to analyze sensor-generated data. However, a major challenge lies in the lack of targeted intelligence in current sensing systems, leading to vast data generation and increased computational and communication costs. To address this challenge, we propose a novel sensing module to equip sensing frameworks with intelligent data transmission capabilities by integrating a highly efficient machine learning model placed near the sensor. This model provides prompt feedback for the sensing system to transmit only valuable data while discarding irrelevant information by regulating the frequency of data transmission. The near-sensor model is quantized and optimized for real-time sensor control. To enhance the framework's performance, the training process is customized and a "lazy" sensor deactivation strategy utilizing temporal information is introduced. The suggested method is orthogonal to other IoT frameworks and can be considered as a plugin for selective data transmission. The framework is implemented, encompassing both software and hardware components. The experiments demonstrate that the framework utilizing the suggested module achieves over 85% system efficiency in terms of energy consumption and storage, with negligible impact on performance. This methodology has the potential to significantly reduce data output from sensors, benefiting a wide range of IoT applications.
Abstract:Over the past few years, silicon photonics-based computing has emerged as a promising alternative to CMOS-based computing for Deep Neural Networks (DNN). Unfortunately, the non-linear operations and the high-precision requirements of DNNs make it extremely challenging to design efficient silicon photonics-based systems for DNN inference and training. Hyperdimensional Computing (HDC) is an emerging, brain-inspired machine learning technique that enjoys several advantages over existing DNNs, including being lightweight, requiring low-precision operands, and being robust to noise introduced by the nonidealities in the hardware. For HDC, computing in-memory (CiM) approaches have been widely used, as CiM reduces the data transfer cost if the operands can fit into the memory. However, inefficient multi-bit operations, high write latency, and low endurance make CiM ill-suited for HDC. On the other hand, the existing electro-photonic DNN accelerators are inefficient for HDC because they are specifically optimized for matrix multiplication in DNNs and consume a lot of power with high-precision data converters. In this paper, we argue that photonic computing and HDC complement each other better than photonic computing and DNNs, or CiM and HDC. We propose PhotoHDC, the first-ever electro-photonic accelerator for HDC training and inference, supporting the basic, record-based, and graph encoding schemes. Evaluating with popular datasets, we show that our accelerator can achieve two to five orders of magnitude lower EDP than the state-of-the-art electro-photonic DNN accelerators for implementing HDC training and inference. PhotoHDC also achieves four orders of magnitude lower energy-delay product than CiM-based accelerators for both HDC training and inference.