Abstract:Human pose estimation (HPE) is crucial for various applications. However, deploying HPE algorithms in surveillance contexts raises significant privacy concerns due to the potential leakage of sensitive personal information (SPI) such as facial features, and ethnicity. Existing privacy-enhancing methods often compromise either privacy or performance, or they require costly additional modalities. We propose a novel privacy-enhancing system that generates privacy-enhanced portraits while maintaining high HPE performance. Our key innovations include the reversible recovery of SPI for authorized personnel and the preservation of contextual information. By jointly optimizing a privacy-enhancing module, a privacy recovery module, and a pose estimator, our system ensures robust privacy protection, efficient SPI recovery, and high-performance HPE. Experimental results demonstrate the system's robust performance in privacy enhancement, SPI recovery, and HPE.
Abstract:Detecting marine objects inshore presents challenges owing to algorithmic intricacies and complexities in system deployment. We propose a difficulty-aware edge-cloud collaborative sensing system that splits the task into object localization and fine-grained classification. Objects are classified either at the edge or within the cloud, based on their estimated difficulty. The framework comprises a low-power device-tailored front-end model for object localization, classification, and difficulty estimation, along with a transformer-graph convolutional network-based back-end model for fine-grained classification. Our system demonstrates superior performance (mAP@0.5 +4.3%}) on widely used marine object detection datasets, significantly reducing both data transmission volume (by 95.43%) and energy consumption (by 72.7%}) at the system level. We validate the proposed system across various embedded system platforms and in real-world scenarios involving drone deployment.
Abstract:Applications in the Internet of Things (IoT) utilize machine learning to analyze sensor-generated data. However, a major challenge lies in the lack of targeted intelligence in current sensing systems, leading to vast data generation and increased computational and communication costs. To address this challenge, we propose a novel sensing module to equip sensing frameworks with intelligent data transmission capabilities by integrating a highly efficient machine learning model placed near the sensor. This model provides prompt feedback for the sensing system to transmit only valuable data while discarding irrelevant information by regulating the frequency of data transmission. The near-sensor model is quantized and optimized for real-time sensor control. To enhance the framework's performance, the training process is customized and a "lazy" sensor deactivation strategy utilizing temporal information is introduced. The suggested method is orthogonal to other IoT frameworks and can be considered as a plugin for selective data transmission. The framework is implemented, encompassing both software and hardware components. The experiments demonstrate that the framework utilizing the suggested module achieves over 85% system efficiency in terms of energy consumption and storage, with negligible impact on performance. This methodology has the potential to significantly reduce data output from sensors, benefiting a wide range of IoT applications.