Abstract:Traffic classification is vital for cybersecurity, yet encrypted traffic poses significant challenges. We present PacketCLIP, a multi-modal framework combining packet data with natural language semantics through contrastive pretraining and hierarchical Graph Neural Network (GNN) reasoning. PacketCLIP integrates semantic reasoning with efficient classification, enabling robust detection of anomalies in encrypted network flows. By aligning textual descriptions with packet behaviors, it offers enhanced interpretability, scalability, and practical applicability across diverse security scenarios. PacketCLIP achieves a 95% mean AUC, outperforms baselines by 11.6%, and reduces model size by 92%, making it ideal for real-time anomaly detection. By bridging advanced machine learning techniques and practical cybersecurity needs, PacketCLIP provides a foundation for scalable, efficient, and interpretable solutions to tackle encrypted traffic classification and network intrusion detection challenges in resource-constrained environments.
Abstract:Referring multi-object tracking (RMOT) is an emerging cross-modal task that aims to localize an arbitrary number of targets based on a language expression and continuously track them in a video. This intricate task involves reasoning on multi-modal data and precise target localization with temporal association. However, prior studies overlook the imbalanced data distribution between newborn targets and existing targets due to the nature of the task. In addition, they only indirectly fuse multi-modal features, struggling to deliver clear guidance on newborn target detection. To solve the above issues, we conduct a collaborative matching strategy to alleviate the impact of the imbalance, boosting the ability to detect newborn targets while maintaining tracking performance. In the encoder, we integrate and enhance the cross-modal and multi-scale fusion, overcoming the bottlenecks in previous work, where limited multi-modal information is shared and interacted between feature maps. In the decoder, we also develop a referring-infused adaptation that provides explicit referring guidance through the query tokens. The experiments showcase the superior performance of our model (+3.42%) compared to prior works, demonstrating the effectiveness of our designs.