Abstract:Recent breakthroughs in single-image 3D portrait reconstruction have enabled telepresence systems to stream 3D portrait videos from a single camera in real-time, potentially democratizing telepresence. However, per-frame 3D reconstruction exhibits temporal inconsistency and forgets the user's appearance. On the other hand, self-reenactment methods can render coherent 3D portraits by driving a personalized 3D prior, but fail to faithfully reconstruct the user's per-frame appearance (e.g., facial expressions and lighting). In this work, we recognize the need to maintain both coherent identity and dynamic per-frame appearance to enable the best possible realism. To this end, we propose a new fusion-based method that fuses a personalized 3D subject prior with per-frame information, producing temporally stable 3D videos with faithful reconstruction of the user's per-frame appearances. Trained only using synthetic data produced by an expression-conditioned 3D GAN, our encoder-based method achieves both state-of-the-art 3D reconstruction accuracy and temporal consistency on in-studio and in-the-wild datasets.
Abstract:Our paper presents My3DGen, a practical system for creating a personalized and lightweight 3D generative prior using as few as 10 images. My3DGen can reconstruct multi-view consistent images from an input test image, and generate novel appearances by interpolating between any two images of the same individual. While recent studies have demonstrated the effectiveness of personalized generative priors in producing high-quality 2D portrait reconstructions and syntheses, to the best of our knowledge, we are the first to develop a personalized 3D generative prior. Instead of fine-tuning a large pre-trained generative model with millions of parameters to achieve personalization, we propose a parameter-efficient approach. Our method involves utilizing a pre-trained model with fixed weights as a generic prior, while training a separate personalized prior through low-rank decomposition of the weights in each convolution and fully connected layer. However, parameter-efficient few-shot fine-tuning on its own often leads to overfitting. To address this, we introduce a regularization technique based on symmetry of human faces. This regularization enforces that novel view renderings of a training sample, rendered from symmetric poses, exhibit the same identity. By incorporating this symmetry prior, we enhance the quality of reconstruction and synthesis, particularly for non-frontal (profile) faces. Our final system combines low-rank fine-tuning with symmetry regularization and significantly surpasses the performance of pre-trained models, e.g. EG3D. It introduces only approximately 0.6 million additional parameters per identity compared to 31 million for full finetuning of the original model. As a result, our system achieves a 50-fold reduction in model size without sacrificing the quality of the generated 3D faces. Code will be available at our project page: https://luchaoqi.github.io/my3dgen.
Abstract:In this paper, we work to bring telepresence to every desktop. Unlike commercial systems, personal 3D video conferencing systems must render high-quality videos while remaining financially and computationally viable for the average consumer. To this end, we introduce a capturing and rendering system that only requires 4 consumer-grade RGBD cameras and synthesizes high-quality free-viewpoint videos of users as well as their environments. Experimental results show that our system renders high-quality free-viewpoint videos without using object templates or heavy pre-processing. While not real-time, our system is fast and does not require per-video optimizations. Moreover, our system is robust to complex hand gestures and clothing, and it can generalize to new users. This work provides a strong basis for further optimization, and it will help bring telepresence to every desk in the near future. The code and dataset will be made available on our website https://mcmvmc.github.io/PersonalTelepresence/.
Abstract:Recent works in spatiotemporal radiance fields can produce photorealistic free-viewpoint videos. However, they are inherently unsuitable for interactive streaming scenarios (e.g. video conferencing, telepresence) because have an inevitable lag even if the training is instantaneous. This is because these approaches consume videos and thus have to buffer chunks of frames (often seconds) before processing. In this work, we take a step towards interactive streaming via a frame-by-frame approach naturally free of lag. Conventional wisdom believes that per-frame NeRFs are impractical due to prohibitive training costs and storage. We break this belief by introducing Incremental Neural Videos (INV), a per-frame NeRF that is efficiently trained and streamable. We designed INV based on two insights: (1) Our main finding is that MLPs naturally partition themselves into Structure and Color Layers, which store structural and color/texture information respectively. (2) We leverage this property to retain and improve upon knowledge from previous frames, thus amortizing training across frames and reducing redundant learning. As a result, with negligible changes to NeRF, INV can achieve good qualities (>28.6db) in 8min/frame. It can also outperform prior SOTA in 19% less training time. Additionally, our Temporal Weight Compression reduces the per-frame size to 0.3MB/frame (6.6% of NeRF). More importantly, INV is free from buffer lag and is naturally fit for streaming. While this work does not achieve real-time training, it shows that incremental approaches like INV present new possibilities in interactive 3D streaming. Moreover, our discovery of natural information partition leads to a better understanding and manipulation of MLPs. Code and dataset will be released soon.
Abstract:There have been significant advancements in dynamic novel view synthesis in recent years. However, current deep learning models often require (1) prior models (e.g., SMPL human models), (2) heavy pre-processing, or (3) per-scene optimization. We propose to utilize RGBD cameras to remove these limitations and synthesize free-viewpoint videos of dynamic indoor scenes. We generate feature point clouds from RGBD frames and then render them into free-viewpoint videos via a neural renderer. However, the inaccurate, unstable, and incomplete depth measurements induce severe distortions, flickering, and ghosting artifacts. We enforce spatial-temporal consistency via the proposed Cycle Reconstruction Consistency and Temporal Stabilization module to reduce these artifacts. We introduce a simple Regional Depth-Inpainting module that adaptively inpaints missing depth values to render complete novel views. Additionally, we present a Human-Things Interactions dataset to validate our approach and facilitate future research. The dataset consists of 43 multi-view RGBD video sequences of everyday activities, capturing complex interactions between human subjects and their surroundings. Experiments on the HTI dataset show that our method outperforms the baseline per-frame image fidelity and spatial-temporal consistency. We will release our code, and the dataset on the website soon.
Abstract:Estimating pose from given 3D correspondences, including point-to-point, point-to-line and point-to-plane correspondences, is a fundamental task in computer vision with many applications. We present a complete solution for this task, including a solution for the minimal problem and the least-squares problem of this task. Previous works mainly focused on finding the global minimizer to address the least-squares problem. However, existing works that show the ability to achieve global minimizer are still unsuitable for real-time applications. Furthermore, as one of contributions of this paper, we prove that there exist ambiguous configurations for any number of lines and planes. These configurations have several solutions in theory, which makes the correct solution may come from a local minimizer. Our algorithm is efficient and able to reveal local minimizers. We employ the Cayley-Gibbs-Rodriguez (CGR) parameterization of the rotation to derive a general rational cost for the three cases of 3D correspondences. The main contribution of this paper is to solve the resulting equation system of the minimal problem and the first-order optimality conditions of the least-squares problem, both of which are of complicated rational forms. The central idea of our algorithm is to introduce intermediate unknowns to simplify the problem. Extensive experimental results show that our algorithm significantly outperforms previous algorithms when the number of correspondences is small. Besides, when the global minimizer is the solution, our algorithm achieves the same accuracy as previous algorithms that have guaranteed global optimality, but our algorithm is applicable to real-time applications.
Abstract:We present a novel unsupervised learning framework for single view depth estimation using monocular videos. It is well known in 3D vision that enlarging the baseline can increase the depth estimation accuracy, and jointly optimizing a set of camera poses and landmarks is essential. In previous monocular unsupervised learning frameworks, only part of the photometric and geometric constraints within a sequence are used as supervisory signals. This may result in a short baseline and overfitting. Besides, previous works generally estimate a low resolution depth from a low resolution impute image. The low resolution depth is then interpolated to recover the original resolution. This strategy may generate large errors on object boundaries, as the depth of background and foreground are mixed to yield the high resolution depth. In this paper, we introduce a bundle adjustment framework and a super-resolution network to solve the above two problems. In bundle adjustment, depths and poses of an image sequence are jointly optimized, which increases the baseline by establishing the relationship between farther frames. The super resolution network learns to estimate a high resolution depth from a low resolution image. Additionally, we introduce the clip loss to deal with moving objects and occlusion. Experimental results on the KITTI dataset show that the proposed algorithm outperforms the state-of-the-art unsupervised methods using monocular sequences, and achieves comparable or even better result compared to unsupervised methods using stereo sequences.