Abstract:To promote the practical application of AI Global Weather Forecasting Models (AIGWFM), we have developed an adaptable application platform named 'YanTian'. This platform enhances existing open-source AIGWFM with a suite of capability-enhancing modules and is constructed by a "loosely coupled" plug-in architecture. The goal of 'YanTian' is to address the limitations of current open-source AIGWFM in operational application, including improving local forecast accuracy, providing spatial high-resolution forecasts, increasing density of forecast intervals, and generating diverse products with the provision of AIGC capabilities. 'YianTian' also provides a simple, visualized user interface, allowing meteorologists easily access both basic and extended capabilities of the platform by simply configuring the platform UI. Users do not need to possess the complex artificial intelligence knowledge and the coding techniques. Additionally, 'YianTian' can be deployed on a PC with GPUs. We hope 'YianTian' can facilitate the operational widespread adoption of AIGWFMs.
Abstract:Existing methods for capturing datasets of 3D heads in dense semantic correspondence are slow, and commonly address the problem in two separate steps; multi-view stereo (MVS) reconstruction followed by non-rigid registration. To simplify this process, we introduce TEMPEH (Towards Estimation of 3D Meshes from Performances of Expressive Heads) to directly infer 3D heads in dense correspondence from calibrated multi-view images. Registering datasets of 3D scans typically requires manual parameter tuning to find the right balance between accurately fitting the scans surfaces and being robust to scanning noise and outliers. Instead, we propose to jointly register a 3D head dataset while training TEMPEH. Specifically, during training we minimize a geometric loss commonly used for surface registration, effectively leveraging TEMPEH as a regularizer. Our multi-view head inference builds on a volumetric feature representation that samples and fuses features from each view using camera calibration information. To account for partial occlusions and a large capture volume that enables head movements, we use view- and surface-aware feature fusion, and a spatial transformer-based head localization module, respectively. We use raw MVS scans as supervision during training, but, once trained, TEMPEH directly predicts 3D heads in dense correspondence without requiring scans. Predicting one head takes about 0.3 seconds with a median reconstruction error of 0.26 mm, 64% lower than the current state-of-the-art. This enables the efficient capture of large datasets containing multiple people and diverse facial motions. Code, model, and data are publicly available at https://tempeh.is.tue.mpg.de.
Abstract:High-fidelity face digitization solutions often combine multi-view stereo (MVS) techniques for 3D reconstruction and a non-rigid registration step to establish dense correspondence across identities and expressions. A common problem is the need for manual clean-up after the MVS step, as 3D scans are typically affected by noise and outliers and contain hairy surface regions that need to be cleaned up by artists. Furthermore, mesh registration tends to fail for extreme facial expressions. Most learning-based methods use an underlying 3D morphable model (3DMM) to ensure robustness, but this limits the output accuracy for extreme facial expressions. In addition, the global bottleneck of regression architectures cannot produce meshes that tightly fit the ground truth surfaces. We propose ToFu, Topologically consistent Face from multi-view, a geometry inference framework that can produce topologically consistent meshes across facial identities and expressions using a volumetric representation instead of an explicit underlying 3DMM. Our novel progressive mesh generation network embeds the topological structure of the face in a feature volume, sampled from geometry-aware local features. A coarse-to-fine architecture facilitates dense and accurate facial mesh predictions in a consistent mesh topology. ToFu further captures displacement maps for pore-level geometric details and facilitates high-quality rendering in the form of albedo and specular reflectance maps. These high-quality assets are readily usable by production studios for avatar creation, animation and physically-based skin rendering. We demonstrate state-of-the-art geometric and correspondence accuracy, while only taking 0.385 seconds to compute a mesh with 10K vertices, which is three orders of magnitude faster than traditional techniques. The code and the model are available for research purposes at https://tianyeli.github.io/tofu.
Abstract:We propose a novel approach for 3D video synthesis that is able to represent multi-view video recordings of a dynamic real-world scene in a compact, yet expressive representation that enables high-quality view synthesis and motion interpolation. Our approach takes the high quality and compactness of static neural radiance fields in a new direction: to a model-free, dynamic setting. At the core of our approach is a novel time-conditioned neural radiance fields that represents scene dynamics using a set of compact latent codes. To exploit the fact that changes between adjacent frames of a video are typically small and locally consistent, we propose two novel strategies for efficient training of our neural network: 1) An efficient hierarchical training scheme, and 2) an importance sampling strategy that selects the next rays for training based on the temporal variation of the input videos. In combination, these two strategies significantly boost the training speed, lead to fast convergence of the training process, and enable high quality results. Our learned representation is highly compact and able to represent a 10 second 30 FPS multi-view video recording by 18 cameras with a model size of just 28MB. We demonstrate that our method can render high-fidelity wide-angle novel views at over 1K resolution, even for highly complex and dynamic scenes. We perform an extensive qualitative and quantitative evaluation that shows that our approach outperforms the current state of the art. We include additional video and information at: https://neural-3d-video.github.io/
Abstract:Near-range portrait photographs often contain perspective distortion artifacts that bias human perception and challenge both facial recognition and reconstruction techniques. We present the first deep learning based approach to remove such artifacts from unconstrained portraits. In contrast to the previous state-of-the-art approach, our method handles even portraits with extreme perspective distortion, as we avoid the inaccurate and error-prone step of first fitting a 3D face model. Instead, we predict a distortion correction flow map that encodes a per-pixel displacement that removes distortion artifacts when applied to the input image. Our method also automatically infers missing facial features, i.e. occluded ears caused by strong perspective distortion, with coherent details. We demonstrate that our approach significantly outperforms the previous state-of-the-art both qualitatively and quantitatively, particularly for portraits with extreme perspective distortion or facial expressions. We further show that our technique benefits a number of fundamental tasks, significantly improving the accuracy of both face recognition and 3D reconstruction and enables a novel camera calibration technique from a single portrait. Moreover, we also build the first perspective portrait database with a large diversity in identities, expression and poses, which will benefit the related research in this area.
Abstract:Rendering bridges the gap between 2D vision and 3D scenes by simulating the physical process of image formation. By inverting such renderer, one can think of a learning approach to infer 3D information from 2D images. However, standard graphics renderers involve a fundamental discretization step called rasterization, which prevents the rendering process to be differentiable, hence able to be learned. Unlike the state-of-the-art differentiable renderers, which only approximate the rendering gradient in the back propagation, we propose a truly differentiable rendering framework that is able to (1) directly render colorized mesh using differentiable functions and (2) back-propagate efficient supervision signals to mesh vertices and their attributes from various forms of image representations, including silhouette, shading and color images. The key to our framework is a novel formulation that views rendering as an aggregation function that fuses the probabilistic contributions of all mesh triangles with respect to the rendered pixels. Such formulation enables our framework to flow gradients to the occluded and far-range vertices, which cannot be achieved by the previous state-of-the-arts. We show that by using the proposed renderer, one can achieve significant improvement in 3D unsupervised single-view reconstruction both qualitatively and quantitatively. Experiments also demonstrate that our approach is able to handle the challenging tasks in image-based shape fitting, which remain nontrivial to existing differentiable renderers.
Abstract:Rendering is the process of generating 2D images from 3D assets, simulated in a virtual environment, typically with a graphics pipeline. By inverting such renderer, one can think of a learning approach to predict a 3D shape from an input image. However, standard rendering pipelines involve a fundamental discretization step called rasterization, which prevents the rendering process to be differentiable, hence suitable for learning. We present the first non-parametric and truly differentiable rasterizer based on silhouettes. Our method enables unsupervised learning for high-quality 3D mesh reconstruction from a single image. We call our framework `soft rasterizer' as it provides an accurate soft approximation of the standard rasterizer. The key idea is to fuse the probabilistic contributions of all mesh triangles with respect to the rendered pixels. When combined with a mesh generator in a deep neural network, our soft rasterizer is able to generate an approximated silhouette of the generated polygon mesh in the forward pass. The rendering loss is back-propagated to supervise the mesh generation without the need of 3D training data. Experimental results demonstrate that our approach significantly outperforms the state-of-the-art unsupervised techniques, both quantitatively and qualitatively. We also show that our soft rasterizer can achieve comparable results to the cutting-edge supervised learning method and in various cases even better ones, especially for real-world data.
Abstract:We introduce the concept of unconstrained real-time 3D facial performance capture through explicit semantic segmentation in the RGB input. To ensure robustness, cutting edge supervised learning approaches rely on large training datasets of face images captured in the wild. While impressive tracking quality has been demonstrated for faces that are largely visible, any occlusion due to hair, accessories, or hand-to-face gestures would result in significant visual artifacts and loss of tracking accuracy. The modeling of occlusions has been mostly avoided due to its immense space of appearance variability. To address this curse of high dimensionality, we perform tracking in unconstrained images assuming non-face regions can be fully masked out. Along with recent breakthroughs in deep learning, we demonstrate that pixel-level facial segmentation is possible in real-time by repurposing convolutional neural networks designed originally for general semantic segmentation. We develop an efficient architecture based on a two-stream deconvolution network with complementary characteristics, and introduce carefully designed training samples and data augmentation strategies for improved segmentation accuracy and robustness. We adopt a state-of-the-art regression-based facial tracking framework with segmented face images as training, and demonstrate accurate and uninterrupted facial performance capture in the presence of extreme occlusion and even side views. Furthermore, the resulting segmentation can be directly used to composite partial 3D face models on the input images and enable seamless facial manipulation tasks, such as virtual make-up or face replacement.