Abstract:Multimodal punchlines, which involve humor or sarcasm conveyed in image-caption pairs, are a popular way of communication on online multimedia platforms. With the rapid development of multimodal large language models (MLLMs), it is essential to assess their ability to effectively comprehend these punchlines. However, existing benchmarks on punchline comprehension suffer from three major limitations: 1) language shortcuts that allow models to solely rely on text, 2) lack of question diversity, and 3) narrow focus on a specific domain of multimodal content (e.g., cartoon). To address these limitations, we introduce a multimodal \textbf{Punch}line comprehension \textbf{Bench}mark, named \textbf{PunchBench}, which is tailored for accurate and comprehensive evaluation of punchline comprehension. To enhance the evaluation accuracy, we generate synonymous and antonymous captions by modifying original captions, which mitigates the impact of shortcuts in the captions. To provide a comprehensive evaluation, PunchBench incorporates diverse question formats and image-captions from various domains. On this basis, we conduct extensive evaluations and reveal a significant gap between state-of-the-art MLLMs and humans in punchline comprehension. To improve punchline comprehension, we propose Simple-to-Complex Chain-of-Question (SC-CoQ) strategy, enabling the models to incrementally address complicated questions by first mastering simple ones. SC-CoQ effectively enhances the performance of various MLLMs on PunchBench, surpassing in-context learning and chain-of-thought.
Abstract:Sarcasm Explanation in Dialogue (SED) is a new yet challenging task, which aims to generate a natural language explanation for the given sarcastic dialogue that involves multiple modalities (i.e., utterance, video, and audio). Although existing studies have achieved great success based on the generative pretrained language model BART, they overlook exploiting the sentiments residing in the utterance, video and audio, which are vital clues for sarcasm explanation. In fact, it is non-trivial to incorporate sentiments for boosting SED performance, due to three main challenges: 1) diverse effects of utterance tokens on sentiments; 2) gap between video-audio sentiment signals and the embedding space of BART; and 3) various relations among utterances, utterance sentiments, and video-audio sentiments. To tackle these challenges, we propose a novel sEntiment-enhanceD Graph-based multimodal sarcasm Explanation framework, named EDGE. In particular, we first propose a lexicon-guided utterance sentiment inference module, where a heuristic utterance sentiment refinement strategy is devised. We then develop a module named Joint Cross Attention-based Sentiment Inference (JCA-SI) by extending the multimodal sentiment analysis model JCA to derive the joint sentiment label for each video-audio clip. Thereafter, we devise a context-sentiment graph to comprehensively model the semantic relations among the utterances, utterance sentiments, and video-audio sentiments, to facilitate sarcasm explanation generation. Extensive experiments on the publicly released dataset WITS verify the superiority of our model over cutting-edge methods.
Abstract:Multimodal Sarcasm Explanation (MuSE) is a new yet challenging task, which aims to generate a natural language sentence for a multimodal social post (an image as well as its caption) to explain why it contains sarcasm. Although the existing pioneer study has achieved great success with the BART backbone, it overlooks the gap between the visual feature space and the decoder semantic space, the object-level metadata of the image, as well as the potential external knowledge. To solve these limitations, in this work, we propose a novel mulTi-source sEmantic grAph-based Multimodal sarcasm explanation scheme, named TEAM. In particular, TEAM extracts the object-level semantic meta-data instead of the traditional global visual features from the input image. Meanwhile, TEAM resorts to ConceptNet to obtain the external related knowledge concepts for the input text and the extracted object meta-data. Thereafter, TEAM introduces a multi-source semantic graph that comprehensively characterize the multi-source (i.e., caption, object meta-data, external knowledge) semantic relations to facilitate the sarcasm reasoning. Extensive experiments on a public released dataset MORE verify the superiority of our model over cutting-edge methods.
Abstract:Convolutional Neural Networks (CNNs) have been widely adopted in raster-based urban flow analytics by virtue of their capability in capturing nearby spatial context. By revisiting CNN-based methods for different analytics tasks, we expose two common critical drawbacks in the existing uses: 1) inefficiency in learning global context, and 2) overlooking latent region functions. To tackle these challenges, in this paper we present a novel framework entitled DeepLGR that can be easily generalized to address various urban flow analytics problems. This framework consists of three major parts: 1) a local context module to learn local representations of each region; 2) a global context module to extract global contextual priors and upsample them to generate the global features; and 3) a region-specific predictor based on tensor decomposition to provide customized predictions for each region, which is very parameter-efficient compared to previous methods. Extensive experiments on two typical urban analytics tasks demonstrate the effectiveness, stability, and generality of our framework.
Abstract:The ubiquitous deployment of monitoring devices in urban flow monitoring systems induces a significant cost for maintenance and operation. A technique is required to reduce the number of deployed devices, while preventing the degeneration of data accuracy and granularity. In this paper, we present an approach for inferring the real-time and fine-grained crowd flows throughout a city based on coarse-grained observations. This task exhibits two challenges: the spatial correlations between coarse- and fine-grained urban flows, and the complexities of external impacts. To tackle these issues, we develop a model entitled UrbanFM which consists of two major parts: 1) an inference network to generate fine-grained flow distributions from coarse-grained inputs that uses a feature extraction module and a novel distributional upsampling module; 2) a general fusion subnet to further boost the performance by considering the influence of different external factors. This structure provides outstanding effectiveness and efficiency for small scale upsampling. However, the single-pass upsampling used by UrbanFM is insufficient at higher upscaling rates. Therefore, we further present UrbanPy, a cascading model for progressive inference of fine-grained urban flows by decomposing the original tasks into multiple subtasks. Compared to UrbanFM, such an enhanced structure demonstrates favorable performance for larger-scale inference tasks.
Abstract:Urban flow monitoring systems play important roles in smart city efforts around the world. However, the ubiquitous deployment of monitoring devices, such as CCTVs, induces a long-lasting and enormous cost for maintenance and operation. This suggests the need for a technology that can reduce the number of deployed devices, while preventing the degeneration of data accuracy and granularity. In this paper, we aim to infer the real-time and fine-grained crowd flows throughout a city based on coarse-grained observations. This task is challenging due to two reasons: the spatial correlations between coarse- and fine-grained urban flows, and the complexities of external impacts. To tackle these issues, we develop a method entitled UrbanFM based on deep neural networks. Our model consists of two major parts: 1) an inference network to generate fine-grained flow distributions from coarse-grained inputs by using a feature extraction module and a novel distributional upsampling module; 2) a general fusion subnet to further boost the performance by considering the influences of different external factors. Extensive experiments on two real-world datasets, namely TaxiBJ and HappyValley, validate the effectiveness and efficiency of our method compared to seven baselines, demonstrating the state-of-the-art performance of our approach on the fine-grained urban flow inference problem.