Abstract:Video editing increasingly demands the ability to incorporate specific real-world instances into existing footage, yet current approaches fundamentally fail to capture the unique visual characteristics of particular subjects and ensure natural instance/scene interactions. We formalize this overlooked yet critical editing paradigm as "Get-In-Video Editing", where users provide reference images to precisely specify visual elements they wish to incorporate into videos. Addressing this task's dual challenges, severe training data scarcity and technical challenges in maintaining spatiotemporal coherence, we introduce three key contributions. First, we develop GetIn-1M dataset created through our automated Recognize-Track-Erase pipeline, which sequentially performs video captioning, salient instance identification, object detection, temporal tracking, and instance removal to generate high-quality video editing pairs with comprehensive annotations (reference image, tracking mask, instance prompt). Second, we present GetInVideo, a novel end-to-end framework that leverages a diffusion transformer architecture with 3D full attention to process reference images, condition videos, and masks simultaneously, maintaining temporal coherence, preserving visual identity, and ensuring natural scene interactions when integrating reference objects into videos. Finally, we establish GetInBench, the first comprehensive benchmark for Get-In-Video Editing scenario, demonstrating our approach's superior performance through extensive evaluations. Our work enables accessible, high-quality incorporation of specific real-world subjects into videos, significantly advancing personalized video editing capabilities.
Abstract:Existing multimodal generative models fall short as qualified design copilots, as they often struggle to generate imaginative outputs once instructions are less detailed or lack the ability to maintain consistency with the provided references. In this work, we introduce WeGen, a model that unifies multimodal generation and understanding, and promotes their interplay in iterative generation. It can generate diverse results with high creativity for less detailed instructions. And it can progressively refine prior generation results or integrating specific contents from references following the instructions in its chat with users. During this process, it is capable of preserving consistency in the parts that the user is already satisfied with. To this end, we curate a large-scale dataset, extracted from Internet videos, containing rich object dynamics and auto-labeled dynamics descriptions by advanced foundation models to date. These two information are interleaved into a single sequence to enable WeGen to learn consistency-aware generation where the specified dynamics are generated while the consistency of unspecified content is preserved aligned with instructions. Besides, we introduce a prompt self-rewriting mechanism to enhance generation diversity. Extensive experiments demonstrate the effectiveness of unifying multimodal understanding and generation in WeGen and show it achieves state-of-the-art performance across various visual generation benchmarks. These also demonstrate the potential of WeGen as a user-friendly design copilot as desired. The code and models will be available at https://github.com/hzphzp/WeGen.
Abstract:Indoor scene texture synthesis has garnered significant interest due to its important potential applications in virtual reality, digital media, and creative arts. Existing diffusion model-based researches either rely on per-view inpainting techniques, which are plagued by severe cross-view inconsistencies and conspicuous seams, or they resort to optimization-based approaches that entail substantial computational overhead. In this work, we present RoomPainter, a framework that seamlessly integrates efficiency and consistency to achieve high-fidelity texturing of indoor scenes. The core of RoomPainter features a zero-shot technique that effectively adapts a 2D diffusion model for 3D-consistent texture synthesis, along with a two-stage generation strategy that ensures both global and local consistency. Specifically, we introduce Attention-Guided Multi-View Integrated Sampling (MVIS) combined with a neighbor-integrated attention mechanism for zero-shot texture map generation. Using the MVIS, we firstly generate texture map for the entire room to ensure global consistency, then adopt its variant, namely an attention-guided multi-view integrated repaint sampling (MVRS) to repaint individual instances within the room, thereby further enhancing local consistency. Experiments demonstrate that RoomPainter achieves superior performance for indoor scene texture synthesis in visual quality, global consistency, and generation efficiency.
Abstract:Despite recent advancements in neural 3D reconstruction, the dependence on dense multi-view captures restricts their broader applicability. In this work, we propose \textbf{ViewCrafter}, a novel method for synthesizing high-fidelity novel views of generic scenes from single or sparse images with the prior of video diffusion model. Our method takes advantage of the powerful generation capabilities of video diffusion model and the coarse 3D clues offered by point-based representation to generate high-quality video frames with precise camera pose control. To further enlarge the generation range of novel views, we tailored an iterative view synthesis strategy together with a camera trajectory planning algorithm to progressively extend the 3D clues and the areas covered by the novel views. With ViewCrafter, we can facilitate various applications, such as immersive experiences with real-time rendering by efficiently optimizing a 3D-GS representation using the reconstructed 3D points and the generated novel views, and scene-level text-to-3D generation for more imaginative content creation. Extensive experiments on diverse datasets demonstrate the strong generalization capability and superior performance of our method in synthesizing high-fidelity and consistent novel views.
Abstract:Spiking neural networks (SNNs) have garnered interest due to their energy efficiency and superior effectiveness on neuromorphic chips compared with traditional artificial neural networks (ANNs). One of the mainstream approaches to implementing deep SNNs is the ANN-SNN conversion, which integrates the efficient training strategy of ANNs with the energy-saving potential and fast inference capability of SNNs. However, under extreme low-latency conditions, the existing conversion theory suggests that the problem of misrepresentation of residual membrane potentials in SNNs, i.e., the inability of IF neurons with a reset-by-subtraction mechanism to respond to residual membrane potentials beyond the range from resting potential to threshold, leads to a performance gap in the converted SNNs compared to the original ANNs. This severely limits the possibility of practical application of SNNs on delay-sensitive edge devices. Existing conversion methods addressing this problem usually involve modifying the state of the conversion spiking neurons. However, these methods do not consider their adaptability and compatibility with neuromorphic chips. We propose a new approach based on explicit modeling of residual errors as additive noise. The noise is incorporated into the activation function of the source ANN, which effectively reduces the residual error. Our experiments on the CIFAR10/100 dataset verify that our approach exceeds the prevailing ANN-SNN conversion methods and directly trained SNNs concerning accuracy and the required time steps. Overall, our method provides new ideas for improving SNN performance under ultra-low-latency conditions and is expected to promote practical neuromorphic hardware applications for further development.
Abstract:At present, large multimodal models (LMMs) have exhibited impressive generalization capabilities in understanding and generating visual signals. However, they currently still lack sufficient capability to perceive low-level visual quality akin to human perception. Can LMMs achieve this and show the same degree of generalization in this regard? If so, not only could the versatility of LMMs be further enhanced, but also the challenge of poor cross-dataset performance in the field of visual quality assessment could be addressed. In this paper, we explore this question and provide the answer "Yes!". As the result of this initial exploration, we present VisualCritic, the first LMM for broad-spectrum image subjective quality assessment. VisualCritic can be used across diverse data right out of box, without any requirements of dataset-specific adaptation operations like conventional specialist models. As an instruction-following LMM, VisualCritic enables new capabilities of (1) quantitatively measuring the perceptual quality of given images in terms of their Mean Opinion Score (MOS), noisiness, colorfulness, sharpness, and other numerical indicators, (2) qualitatively evaluating visual quality and providing explainable descriptions, (3) discerning whether a given image is AI-generated or photographic. Extensive experiments demonstrate the efficacy of VisualCritic by comparing it with other open-source LMMs and conventional specialist models over both AI-generated and photographic images.
Abstract:The development of Large Vision-Language Models (LVLMs) is striving to catch up with the success of Large Language Models (LLMs), yet it faces more challenges to be resolved. Very recent works enable LVLMs to localize object-level visual contents and ground text to them. Nonetheless, current LVLMs still struggle to precisely understand visual relations due to the lack of relevant data. In this work, we present RelationVLM, a large vision-language model capable of comprehending various levels and types of relations whether across multiple images or within a video. Specifically, we devise a multi-stage relation-aware training scheme and a series of corresponding data configuration strategies to bestow RelationVLM with the capabilities of understanding semantic relations, temporal associations and geometric transforms. Extensive case studies and quantitative evaluations show RelationVLM has strong capability in understanding such relations and emerges impressive in-context capability of reasoning from few-shot examples by comparison. This work fosters the advancements of LVLMs by enabling them to support a wider range of downstream applications toward artificial general intelligence.
Abstract:Recent vision transformers, large-kernel CNNs and MLPs have attained remarkable successes in broad vision tasks thanks to their effective information fusion in the global scope. However, their efficient deployments, especially on mobile devices, still suffer from noteworthy challenges due to the heavy computational costs of self-attention mechanisms, large kernels, or fully connected layers. In this work, we apply conventional convolution theorem to deep learning for addressing this and reveal that adaptive frequency filters can serve as efficient global token mixers. With this insight, we propose Adaptive Frequency Filtering (AFF) token mixer. This neural operator transfers a latent representation to the frequency domain via a Fourier transform and performs semantic-adaptive frequency filtering via an elementwise multiplication, which mathematically equals to a token mixing operation in the original latent space with a dynamic convolution kernel as large as the spatial resolution of this latent representation. We take AFF token mixers as primary neural operators to build a lightweight neural network, dubbed AFFNet. Extensive experiments demonstrate the effectiveness of our proposed AFF token mixer and show that AFFNet achieve superior accuracy and efficiency trade-offs compared to other lightweight network designs on broad visual tasks, including visual recognition and dense prediction tasks.
Abstract:Kidney transplantation is the preferred treatment for people suffering from end-stage renal disease. Successful kidney transplants still fail over time, known as graft failure; however, the time to graft failure, or graft survival time, can vary significantly between different recipients. A significant biological factor affecting graft survival times is the compatibility between the human leukocyte antigens (HLAs) of the donor and recipient. We propose to model HLA compatibility using a network, where the nodes denote different HLAs of the donor and recipient, and edge weights denote compatibilities of the HLAs, which can be positive or negative. The network is indirectly observed, as the edge weights are estimated from transplant outcomes rather than directly observed. We propose a latent space model for such indirectly-observed weighted and signed networks. We demonstrate that our latent space model can not only result in more accurate estimates of HLA compatibilities, but can also be incorporated into survival analysis models to improve accuracy for the downstream task of predicting graft survival times.
Abstract:Networks and temporal point processes serve as fundamental building blocks for modeling complex dynamic relational data in various domains. We propose the latent space Hawkes (LSH) model, a novel generative model for continuous-time networks of relational events, using a latent space representation for nodes. We model relational events between nodes using mutually exciting Hawkes processes with baseline intensities dependent upon the distances between the nodes in the latent space and sender and receiver specific effects. We propose an alternating minimization algorithm to jointly estimate the latent positions of the nodes and other model parameters. We demonstrate that our proposed LSH model can replicate many features observed in real temporal networks including reciprocity and transitivity, while also achieves superior prediction accuracy and provides more interpretability compared to existing models.