At present, large multimodal models (LMMs) have exhibited impressive generalization capabilities in understanding and generating visual signals. However, they currently still lack sufficient capability to perceive low-level visual quality akin to human perception. Can LMMs achieve this and show the same degree of generalization in this regard? If so, not only could the versatility of LMMs be further enhanced, but also the challenge of poor cross-dataset performance in the field of visual quality assessment could be addressed. In this paper, we explore this question and provide the answer "Yes!". As the result of this initial exploration, we present VisualCritic, the first LMM for broad-spectrum image subjective quality assessment. VisualCritic can be used across diverse data right out of box, without any requirements of dataset-specific adaptation operations like conventional specialist models. As an instruction-following LMM, VisualCritic enables new capabilities of (1) quantitatively measuring the perceptual quality of given images in terms of their Mean Opinion Score (MOS), noisiness, colorfulness, sharpness, and other numerical indicators, (2) qualitatively evaluating visual quality and providing explainable descriptions, (3) discerning whether a given image is AI-generated or photographic. Extensive experiments demonstrate the efficacy of VisualCritic by comparing it with other open-source LMMs and conventional specialist models over both AI-generated and photographic images.