Abstract:Video editing increasingly demands the ability to incorporate specific real-world instances into existing footage, yet current approaches fundamentally fail to capture the unique visual characteristics of particular subjects and ensure natural instance/scene interactions. We formalize this overlooked yet critical editing paradigm as "Get-In-Video Editing", where users provide reference images to precisely specify visual elements they wish to incorporate into videos. Addressing this task's dual challenges, severe training data scarcity and technical challenges in maintaining spatiotemporal coherence, we introduce three key contributions. First, we develop GetIn-1M dataset created through our automated Recognize-Track-Erase pipeline, which sequentially performs video captioning, salient instance identification, object detection, temporal tracking, and instance removal to generate high-quality video editing pairs with comprehensive annotations (reference image, tracking mask, instance prompt). Second, we present GetInVideo, a novel end-to-end framework that leverages a diffusion transformer architecture with 3D full attention to process reference images, condition videos, and masks simultaneously, maintaining temporal coherence, preserving visual identity, and ensuring natural scene interactions when integrating reference objects into videos. Finally, we establish GetInBench, the first comprehensive benchmark for Get-In-Video Editing scenario, demonstrating our approach's superior performance through extensive evaluations. Our work enables accessible, high-quality incorporation of specific real-world subjects into videos, significantly advancing personalized video editing capabilities.
Abstract:Existing multimodal generative models fall short as qualified design copilots, as they often struggle to generate imaginative outputs once instructions are less detailed or lack the ability to maintain consistency with the provided references. In this work, we introduce WeGen, a model that unifies multimodal generation and understanding, and promotes their interplay in iterative generation. It can generate diverse results with high creativity for less detailed instructions. And it can progressively refine prior generation results or integrating specific contents from references following the instructions in its chat with users. During this process, it is capable of preserving consistency in the parts that the user is already satisfied with. To this end, we curate a large-scale dataset, extracted from Internet videos, containing rich object dynamics and auto-labeled dynamics descriptions by advanced foundation models to date. These two information are interleaved into a single sequence to enable WeGen to learn consistency-aware generation where the specified dynamics are generated while the consistency of unspecified content is preserved aligned with instructions. Besides, we introduce a prompt self-rewriting mechanism to enhance generation diversity. Extensive experiments demonstrate the effectiveness of unifying multimodal understanding and generation in WeGen and show it achieves state-of-the-art performance across various visual generation benchmarks. These also demonstrate the potential of WeGen as a user-friendly design copilot as desired. The code and models will be available at https://github.com/hzphzp/WeGen.
Abstract:Today's open vocabulary scene graph generation (OVSGG) extends traditional SGG by recognizing novel objects and relationships beyond predefined categories, leveraging the knowledge from pre-trained large-scale models. Most existing methods adopt a two-stage pipeline: weakly supervised pre-training with image captions and supervised fine-tuning (SFT) on fully annotated scene graphs. Nonetheless, they omit explicit modeling of interacting objects and treat all objects equally, resulting in mismatched relation pairs. To this end, we propose an interaction-aware OVSGG framework INOVA. During pre-training, INOVA employs an interaction-aware target generation strategy to distinguish interacting objects from non-interacting ones. In SFT, INOVA devises an interaction-guided query selection tactic to prioritize interacting objects during bipartite graph matching. Besides, INOVA is equipped with an interaction-consistent knowledge distillation to enhance the robustness by pushing interacting object pairs away from the background. Extensive experiments on two benchmarks (VG and GQA) show that INOVA achieves state-of-the-art performance, demonstrating the potential of interaction-aware mechanisms for real-world applications.
Abstract:Video-to-music generation presents significant potential in video production, requiring the generated music to be both semantically and rhythmically aligned with the video. Achieving this alignment demands advanced music generation capabilities, sophisticated video understanding, and an efficient mechanism to learn the correspondence between the two modalities. In this paper, we propose VidMusician, a parameter-efficient video-to-music generation framework built upon text-to-music models. VidMusician leverages hierarchical visual features to ensure semantic and rhythmic alignment between video and music. Specifically, our approach utilizes global visual features as semantic conditions and local visual features as rhythmic cues. These features are integrated into the generative backbone via cross-attention and in-attention mechanisms, respectively. Through a two-stage training process, we incrementally incorporate semantic and rhythmic features, utilizing zero initialization and identity initialization to maintain the inherent music-generative capabilities of the backbone. Additionally, we construct a diverse video-music dataset, DVMSet, encompassing various scenarios, such as promo videos, commercials, and compilations. Experiments demonstrate that VidMusician outperforms state-of-the-art methods across multiple evaluation metrics and exhibits robust performance on AI-generated videos. Samples are available at \url{https://youtu.be/EPOSXwtl1jw}.
Abstract:Visual mathematical reasoning, as a fundamental visual reasoning ability, has received widespread attention from the Large Multimodal Models (LMMs) community. Existing benchmarks, such as MathVista and MathVerse, focus more on the result-oriented performance but neglect the underlying principles in knowledge acquisition and generalization. Inspired by human-like mathematical reasoning, we introduce WE-MATH, the first benchmark specifically designed to explore the problem-solving principles beyond end-to-end performance. We meticulously collect and categorize 6.5K visual math problems, spanning 67 hierarchical knowledge concepts and five layers of knowledge granularity. We decompose composite problems into sub-problems according to the required knowledge concepts and introduce a novel four-dimensional metric, namely Insufficient Knowledge (IK), Inadequate Generalization (IG), Complete Mastery (CM), and Rote Memorization (RM), to hierarchically assess inherent issues in LMMs' reasoning process. With WE-MATH, we conduct a thorough evaluation of existing LMMs in visual mathematical reasoning and reveal a negative correlation between solving steps and problem-specific performance. We confirm the IK issue of LMMs can be effectively improved via knowledge augmentation strategies. More notably, the primary challenge of GPT-4o has significantly transitioned from IK to IG, establishing it as the first LMM advancing towards the knowledge generalization stage. In contrast, other LMMs exhibit a marked inclination towards Rote Memorization - they correctly solve composite problems involving multiple knowledge concepts yet fail to answer sub-problems. We anticipate that WE-MATH will open new pathways for advancements in visual mathematical reasoning for LMMs. The WE-MATH data and evaluation code are available at https://github.com/We-Math/We-Math.
Abstract:In this paper, we introduce four main novelties: First, we present a new way of handling the topology problem of normalizing flows. Second, we describe a technique to enforce certain classes of boundary conditions onto normalizing flows. Third, we introduce the I-Spline bijection, which, similar to previous work, leverages splines but, in contrast to those works, can be made arbitrarily often differentiable. And finally, we use these techniques to create Waveflow, an Ansatz for the one-space-dimensional multi-particle fermionic wave functions in real space based on normalizing flows, that can be efficiently trained with Variational Quantum Monte Carlo without the need for MCMC nor estimation of a normalization constant. To enforce the necessary anti-symmetry of fermionic wave functions, we train the normalizing flow only on the fundamental domain of the permutation group, which effectively reduces it to a boundary value problem.
Abstract:Artificial intelligence (AI) and machine learning (ML) are expanding in popularity for broad applications to challenging tasks in chemistry and materials science. Examples include the prediction of properties, the discovery of new reaction pathways, or the design of new molecules. The machine needs to read and write fluently in a chemical language for each of these tasks. Strings are a common tool to represent molecular graphs, and the most popular molecular string representation, SMILES, has powered cheminformatics since the late 1980s. However, in the context of AI and ML in chemistry, SMILES has several shortcomings -- most pertinently, most combinations of symbols lead to invalid results with no valid chemical interpretation. To overcome this issue, a new language for molecules was introduced in 2020 that guarantees 100\% robustness: SELFIES (SELF-referencIng Embedded Strings). SELFIES has since simplified and enabled numerous new applications in chemistry. In this manuscript, we look to the future and discuss molecular string representations, along with their respective opportunities and challenges. We propose 16 concrete Future Projects for robust molecular representations. These involve the extension toward new chemical domains, exciting questions at the interface of AI and robust languages and interpretability for both humans and machines. We hope that these proposals will inspire several follow-up works exploiting the full potential of molecular string representations for the future of AI in chemistry and materials science.
Abstract:Despite the striking performance achieved by modern detectors when training and test data are sampled from the same or similar distribution, the generalization ability of detectors under unknown distribution shifts remains hardly studied. Recently several works discussed the detectors' adaptation ability to a specific target domain which are not readily applicable in real-world applications since detectors may encounter various environments or situations while pre-collecting all of them before training is inconceivable. In this paper, we study the critical problem, domain generalization in object detection (DGOD), where detectors are trained with source domains and evaluated on unknown target domains. To thoroughly evaluate detectors under unknown distribution shifts, we formulate the DGOD problem and propose a comprehensive evaluation benchmark to fill the vacancy. Moreover, we propose a novel method named Region Aware Proposal reweighTing (RAPT) to eliminate dependence within RoI features. Extensive experiments demonstrate that current DG methods fail to address the DGOD problem and our method outperforms other state-of-the-art counterparts.
Abstract:Existing approaches for fine-grained visual recognition focus on learning marginal region-based representations while neglecting the spatial and scale misalignments, leading to inferior performance. In this paper, we propose the spatial-scale aligned network (SSANET) and implicitly address misalignments during the recognition process. Especially, SSANET consists of 1) a self-supervised proposal mining formula with Morphological Alignment Constraints; 2) a discriminative scale mining (DSM) module, which exploits the feature pyramid via a circulant matrix, and provides the Fourier solver for fast scale alignments; 3) an oriented pooling (OP) module, that performs the pooling operation in several pre-defined orientations. Each orientation defines one kind of spatial alignment, and the network automatically determines which is the optimal alignments through learning. With the proposed two modules, our algorithm can automatically determine the accurate local proposal regions and generate more robust target representations being invariant to various appearance variances. Extensive experiments verify that SSANET is competent at learning better spatial-scale invariant target representations, yielding superior performance on the fine-grained recognition task on several benchmarks.
Abstract:The ROI (region-of-interest) based pooling method performs pooling operations on the cropped ROI regions for various samples and has shown great success in the object detection methods. It compresses the model size while preserving the localization accuracy, thus it is useful in the visual tracking field. Though being effective, the ROI-based pooling operation is not yet considered in the correlation filter formula. In this paper, we propose a novel ROI pooled correlation filter (RPCF) algorithm for robust visual tracking. Through mathematical derivations, we show that the ROI-based pooling can be equivalently achieved by enforcing additional constraints on the learned filter weights, which makes the ROI-based pooling feasible on the virtual circular samples. Besides, we develop an efficient joint training formula for the proposed correlation filter algorithm, and derive the Fourier solvers for efficient model training. Finally, we evaluate our RPCF tracker on OTB-2013, OTB-2015 and VOT-2017 benchmark datasets. Experimental results show that our tracker performs favourably against other state-of-the-art trackers.