Abstract:The key challenge of sequence representation learning is to capture the long-range temporal dependencies. Typical methods for supervised sequence representation learning are built upon recurrent neural networks to capture temporal dependencies. One potential limitation of these methods is that they only model one-order information interactions explicitly between adjacent time steps in a sequence, hence the high-order interactions between nonadjacent time steps are not fully exploited. It greatly limits the capability of modeling the long-range temporal dependencies since the temporal features learned by one-order interactions cannot be maintained for a long term due to temporal information dilution and gradient vanishing. To tackle this limitation, we propose the Non-local Recurrent Neural Memory (NRNM) for supervised sequence representation learning, which performs non-local operations \MR{by means of self-attention mechanism} to learn full-order interactions within a sliding temporal memory block and models global interactions between memory blocks in a gated recurrent manner. Consequently, our model is able to capture long-range dependencies. Besides, the latent high-level features contained in high-order interactions can be distilled by our model. We validate the effectiveness and generalization of our NRNM on three types of sequence applications across different modalities, including sequence classification, step-wise sequential prediction and sequence similarity learning. Our model compares favorably against other state-of-the-art methods specifically designed for each of these sequence applications.
Abstract:Typical methods for supervised sequence modeling are built upon the recurrent neural networks to capture temporal dependencies. One potential limitation of these methods is that they only model explicitly information interactions between adjacent time steps in a sequence, hence the high-order interactions between nonadjacent time steps are not fully exploited. It greatly limits the capability of modeling the long-range temporal dependencies since one-order interactions cannot be maintained for a long term due to information dilution and gradient vanishing. To tackle this limitation, we propose the Non-local Recurrent Neural Memory (NRNM) for supervised sequence modeling, which performs non-local operations to learn full-order interactions within a sliding temporal block and models global interactions between blocks in a gated recurrent manner. Consequently, our model is able to capture the long-range dependencies. Besides, the latent high-level features contained in high-order interactions can be distilled by our model. We demonstrate the merits of our NRNM on two different tasks: action recognition and sentiment analysis.
Abstract:Single Shot MultiBox Detector (SSD) is one of the fastest algorithms in the current object detection field, which uses fully convolutional neural network to detect all scaled objects in an image. Deconvolutional Single Shot Detector (DSSD) is an approach which introduces more context information by adding the deconvolution module to SSD. And the mean Average Precision (mAP) of DSSD on PASCAL VOC2007 is improved from SSD's 77.5% to 78.6%. Although DSSD obtains higher mAP than SSD by 1.1%, the frames per second (FPS) decreases from 46 to 11.8. In this paper, we propose a single stage end-to-end image detection model called ESSD to overcome this dilemma. Our solution to this problem is to cleverly extend better context information for the shallow layers of the best single stage (e.g. SSD) detectors. Experimental results show that our model can reach 79.4% mAP, which is higher than DSSD and SSD by 0.8 and 1.9 points respectively. Meanwhile, our testing speed is 25 FPS in Titan X GPU which is more than double the original DSSD.