Abstract:We present El Agente Estructural, a multimodal, natural-language-driven geometry-generation and manipulation agent for autonomous chemistry and molecular modelling. Unlike molecular generation or editing via generative models, Estructural mimics how human experts directly manipulate molecular systems in three dimensions by integrating a comprehensive set of domain-informed tools and vision-language models. This design enables precise control over atomic or functional group replacements, atomic connectivity, and stereochemistry without the need to rebuild extensive core molecular frameworks. Through a series of representative case studies, we demonstrate that Estructural enables chemically meaningful geometry manipulation across a wide range of real-world scenarios. These include site-selective functionalization, ligand binding, ligand exchange, stereochemically controlled structure construction, isomer interconversion, fragment-level structural analysis, image-guided generation of structures from schematic reaction mechanisms, and mechanism-driven geometry generation and modification. These examples illustrate how multimodal reasoning, when combined with specialized geometry-aware tools, supports interactive and context-aware molecular modelling beyond structure generation. Looking forward, the integration of Estructural into El Agente Quntur, an autonomous multi-agent quantum chemistry platform, enhances its capabilities by adding sophisticated tools for the generation and editing of three-dimensional structures.
Abstract:Quantum chemistry is a foundational enabling tool for the fields of chemistry, materials science, computational biology and others. Despite of its power, the practical application of quantum chemistry simulations remains in the hands of qualified experts due to methodological complexity, software heterogeneity, and the need for informed interpretation of results. To bridge the accessibility gap for these tools and expand their reach to chemists with broader backgrounds, we introduce El Agente Quntur, a hierarchical, multi-agent AI system designed to operate not merely as an automation tool but as a research collaborator for computational quantum chemistry. Quntur was designed following three main strategies: i) elimination of hard-coded procedural policies in favour of reasoning-driven decisions, ii) construction of general and composable actions that facilitate generalization and efficiency, and iii) implementation of guided deep research to integrate abstract quantum-chemical reasoning across subdisciplines and a detailed understanding of the software's internal logic and syntax. Although instantiated in ORCA, these design principles are applicable to research agents more generally and easily expandable to additional quantum chemistry packages and beyond. Quntur supports the full range of calculations available in ORCA 6.0 and reasons over software documentation and scientific literature to plan, execute, adapt, and analyze in silico chemistry experiments following best practices. We discuss the advances and current bottlenecks in agentic systems operating at the research level in computational chemistry, and outline a roadmap toward a fully autonomous end-to-end computational chemistry research agent.
Abstract:We introduce ELECTRAFI, a fast, end-to-end differentiable model for predicting periodic charge densities in crystalline materials. ELECTRAFI constructs anisotropic Gaussians in real space and exploits their closed-form Fourier transforms to analytically evaluate plane-wave coefficients via the Poisson summation formula. This formulation delegates non-local and periodic behavior to analytic transforms, enabling reconstruction of the full periodic charge density with a single inverse FFT. By avoiding explicit real-space grid probing, periodic image summation, and spherical harmonic expansions, ELECTRAFI matches or exceeds state-of-the-art accuracy across periodic benchmarks while being up to $633 \times$ faster than the strongest competing method, reconstructing crystal charge densities in a fraction of a second. When used to initialize DFT calculations, ELECTRAFI reduces total DFT compute cost by up to ~20%, whereas slower charge density models negate savings due to high inference times. Our results show that accuracy and inference cost jointly determine end-to-end DFT speedups, and motivate our focus on efficiency.
Abstract:Long documents pose many challenges to current intelligent writing systems. These include maintaining consistency across sections, sustaining efficient planning and writing as documents become more complex, and effectively providing and integrating AI assistance to the user. Existing AI co-writing tools offer either inline suggestions or limited structured planning, but rarely support the entire writing process that begins with high-level ideas and ends with polished prose, in which many layers of planning and outlining are needed. Here, we introduce TreeWriter, a hierarchical writing system that represents documents as trees and integrates contextual AI support. TreeWriter allows authors to create, save, and refine document outlines at multiple levels, facilitating drafting, understanding, and iterative editing of long documents. A built-in AI agent can dynamically load relevant content, navigate the document hierarchy, and provide context-aware editing suggestions. A within-subject study (N=12) comparing TreeWriter with Google Docs + Gemini on long-document editing and creative writing tasks shows that TreeWriter improves idea exploration/development, AI helpfulness, and perceived authorial control. A two-month field deployment (N=8) further demonstrated that hierarchical organization supports collaborative writing. Our findings highlight the potential of hierarchical, tree-structured editors with integrated AI support and provide design guidelines for future AI-assisted writing tools that balance automation with user agency.
Abstract:Accelerated materials discovery is critical for addressing global challenges. However, developing new laboratory workflows relies heavily on real-world experimental trials, and this can hinder scalability because of the need for numerous physical make-and-test iterations. Here we present MATTERIX, a multiscale, graphics processing unit-accelerated robotic simulation framework designed to create high-fidelity digital twins of chemistry laboratories, thus accelerating workflow development. This multiscale digital twin simulates robotic physical manipulation, powder and liquid dynamics, device functionalities, heat transfer and basic chemical reaction kinetics. This is enabled by integrating realistic physics simulation and photorealistic rendering with a modular graphics processing unit-accelerated semantics engine, which models logical states and continuous behaviors to simulate chemistry workflows across different levels of abstraction. MATTERIX streamlines the creation of digital twin environments through open-source asset libraries and interfaces, while enabling flexible workflow design via hierarchical plan definition and a modular skill library that incorporates learning-based methods. Our approach demonstrates sim-to-real transfer in robotic chemistry setups, reducing reliance on costly real-world experiments and enabling the testing of hypothetical automated workflows in silico. The project website is available at https://accelerationconsortium.github.io/Matterix/ .
Abstract:Discrete diffusion models have recently emerged as a promising alternative to the autoregressive approach for generating discrete sequences. Sample generation via gradual denoising or demasking processes allows them to capture hierarchical non-sequential interdependencies in the data. These custom processes, however, do not assume a flexible control over the distribution of generated samples. We propose Discrete Feynman-Kac Correctors, a framework that allows for controlling the generated distribution of discrete masked diffusion models at inference time. We derive Sequential Monte Carlo (SMC) algorithms that, given a trained discrete diffusion model, control the temperature of the sampled distribution (i.e. perform annealing), sample from the product of marginals of several diffusion processes (e.g. differently conditioned processes), and sample from the product of the marginal with an external reward function, producing likely samples from the target distribution that also have high reward. Notably, our framework does not require any training of additional models or fine-tuning of the original model. We illustrate the utility of our framework in several applications including: efficient sampling from the annealed Boltzmann distribution of the Ising model, improving the performance of language models for code generation and amortized learning, as well as reward-tilted protein sequence generation.
Abstract:Bayesian Optimization (BO) is a key methodology for accelerating molecular discovery by estimating the mapping from molecules to their properties while seeking the optimal candidate. Typically, BO iteratively updates a probabilistic surrogate model of this mapping and optimizes acquisition functions derived from the model to guide molecule selection. However, its performance is limited in low-data regimes with insufficient prior knowledge and vast candidate spaces. Large language models (LLMs) and chemistry foundation models offer rich priors to enhance BO, but high-dimensional features, costly in-context learning, and the computational burden of deep Bayesian surrogates hinder their full utilization. To address these challenges, we propose a likelihood-free BO method that bypasses explicit surrogate modeling and directly leverages priors from general LLMs and chemistry-specific foundation models to inform acquisition functions. Our method also learns a tree-structured partition of the molecular search space with local acquisition functions, enabling efficient candidate selection via Monte Carlo Tree Search. By further incorporating coarse-grained LLM-based clustering, it substantially improves scalability to large candidate sets by restricting acquisition function evaluations to clusters with statistically higher property values. We show through extensive experiments and ablations that the proposed method substantially improves scalability, robustness, and sample efficiency in LLM-guided BO for molecular discovery.
Abstract:Machine learning force fields show great promise in enabling more accurate molecular dynamics simulations compared to manually derived ones. Much of the progress in recent years was driven by exploiting prior knowledge about physical systems, in particular symmetries under rotation, translation, and reflections. In this paper, we argue that there is another important piece of prior information that, thus fa,r hasn't been explored: Simulating a molecular system is necessarily continuous, and successive states are therefore extremely similar. Our contribution is to show that we can exploit this information by recasting a state-of-the-art equivariant base model as a deep equilibrium model. This allows us to recycle intermediate neural network features from previous time steps, enabling us to improve both accuracy and speed by $10\%-20\%$ on the MD17, MD22, and OC20 200k datasets, compared to the non-DEQ base model. The training is also much more memory efficient, allowing us to train more expressive models on larger systems.
Abstract:Learning is a physical process. Here, we aim to study a simple dynamical system composed of springs and sticks capable of arbitrarily approximating any continuous function. The main idea of our work is to use the sticks to mimic a piecewise-linear approximation of the given function, use the potential energy of springs to encode a desired mean squared error loss function, and converge to a minimum-energy configuration via dissipation. We apply the proposed simulation system to regression tasks and show that its performance is comparable to that of multi-layer perceptrons. In addition, we study the thermodynamic properties of the system and find a relation between the free energy change of the system and its ability to learn an underlying data distribution. We empirically find a \emph{thermodynamic learning barrier} for the system caused by the fluctuations of the environment, whereby the system cannot learn if its change in free energy hits such a barrier. We believe this simple model can help us better understand learning systems from a physical point of view.
Abstract:Automating biological experimentation remains challenging due to the need for millimeter-scale precision, long and multi-step experiments, and the dynamic nature of living systems. Current liquid handlers only partially automate workflows, requiring human intervention for plate loading, tip replacement, and calibration. Industrial solutions offer more automation but are costly and lack the flexibility needed in research settings. Meanwhile, research in autonomous robotics has yet to bridge the gap for long-duration, failure-sensitive biological experiments. We introduce RoboCulture, a cost-effective and flexible platform that uses a general-purpose robotic manipulator to automate key biological tasks. RoboCulture performs liquid handling, interacts with lab equipment, and leverages computer vision for real-time decisions using optical density-based growth monitoring. We demonstrate a fully autonomous 15-hour yeast culture experiment where RoboCulture uses vision and force feedback and a modular behavior tree framework to robustly execute, monitor, and manage experiments.