Abstract:Molecular structure elucidation is a fundamental step in understanding chemical phenomena, with applications in identifying molecules in natural products, lab syntheses, forensic samples, and the interstellar medium. We consider the task of predicting a molecule's all-atom 3D structure given only its molecular formula and moments of inertia, motivated by the ability of rotational spectroscopy to measure these moments. While existing generative models can conditionally sample 3D structures with approximately correct moments, this soft conditioning fails to leverage the many digits of precision afforded by experimental rotational spectroscopy. To address this, we first show that the space of $n$-atom point clouds with a fixed set of moments of inertia is embedded in the Stiefel manifold $\mathrm{St}(n, 4)$. We then propose Stiefel Flow Matching as a generative model for elucidating 3D structure under exact moment constraints. Additionally, we learn simpler and shorter flows by finding approximate solutions for equivariant optimal transport on the Stiefel manifold. Empirically, enforcing exact moment constraints allows Stiefel Flow Matching to achieve higher success rates and faster sampling than Euclidean diffusion models, even on high-dimensional manifolds corresponding to large molecules in the GEOM dataset.
Abstract:Machine learning has been pervasively touching many fields of science. Chemistry and materials science are no exception. While machine learning has been making a great impact, it is still not reaching its full potential or maturity. In this perspective, we first outline current applications across a diversity of problems in chemistry. Then, we discuss how machine learning researchers view and approach problems in the field. Finally, we provide our considerations for maximizing impact when researching machine learning for chemistry.
Abstract:Structure determination is necessary to identify unknown organic molecules, such as those in natural products, forensic samples, the interstellar medium, and laboratory syntheses. Rotational spectroscopy enables structure determination by providing accurate 3D information about small organic molecules via their moments of inertia. Using these moments, Kraitchman analysis determines isotopic substitution coordinates, which are the unsigned $|x|,|y|,|z|$ coordinates of all atoms with natural isotopic abundance, including carbon, nitrogen, and oxygen. While unsigned substitution coordinates can verify guesses of structures, the missing $+/-$ signs make it challenging to determine the actual structure from the substitution coordinates alone. To tackle this inverse problem, we develop KREED (Kraitchman REflection-Equivariant Diffusion), a generative diffusion model that infers a molecule's complete 3D structure from its molecular formula, moments of inertia, and unsigned substitution coordinates of heavy atoms. KREED's top-1 predictions identify the correct 3D structure with >98% accuracy on the QM9 and GEOM datasets when provided with substitution coordinates of all heavy atoms with natural isotopic abundance. When substitution coordinates are restricted to only a subset of carbons, accuracy is retained at 91% on QM9 and 32% on GEOM. On a test set of experimentally measured substitution coordinates gathered from the literature, KREED predicts the correct all-atom 3D structure in 25 of 33 cases, demonstrating experimental applicability for context-free 3D structure determination with rotational spectroscopy.
Abstract:We introduce Group SELFIES, a molecular string representation that leverages group tokens to represent functional groups or entire substructures while maintaining chemical robustness guarantees. Molecular string representations, such as SMILES and SELFIES, serve as the basis for molecular generation and optimization in chemical language models, deep generative models, and evolutionary methods. While SMILES and SELFIES leverage atomic representations, Group SELFIES builds on top of the chemical robustness guarantees of SELFIES by enabling group tokens, thereby creating additional flexibility to the representation. Moreover, the group tokens in Group SELFIES can take advantage of inductive biases of molecular fragments that capture meaningful chemical motifs. The advantages of capturing chemical motifs and flexibility are demonstrated in our experiments, which show that Group SELFIES improves distribution learning of common molecular datasets. Further experiments also show that random sampling of Group SELFIES strings improves the quality of generated molecules compared to regular SELFIES strings. Our open-source implementation of Group SELFIES is available online, which we hope will aid future research in molecular generation and optimization.