Abstract:Speech emotion recognition (SER) systems aim to recognize human emotional state during human-computer interaction. Most existing SER systems are trained based on utterance-level labels. However, not all frames in an audio have affective states consistent with utterance-level label, which makes it difficult for the model to distinguish the true emotion of the audio and perform poorly. To address this problem, we propose a frame-level emotional state alignment method for SER. First, we fine-tune HuBERT model to obtain a SER system with task-adaptive pretraining (TAPT) method, and extract embeddings from its transformer layers to form frame-level pseudo-emotion labels with clustering. Then, the pseudo labels are used to pretrain HuBERT. Hence, the each frame output of HuBERT has corresponding emotional information. Finally, we fine-tune the above pretrained HuBERT for SER by adding an attention layer on the top of it, which can focus only on those frames that are emotionally more consistent with utterance-level label. The experimental results performed on IEMOCAP indicate that our proposed method performs better than state-of-the-art (SOTA) methods.
Abstract:Conversational speech synthesis (CSS) incorporates historical dialogue as supplementary information with the aim of generating speech that has dialogue-appropriate prosody. While previous methods have already delved into enhancing context comprehension, context representation still lacks effective representation capabilities and context-sensitive discriminability. In this paper, we introduce a contrastive learning-based CSS framework, CONCSS. Within this framework, we define an innovative pretext task specific to CSS that enables the model to perform self-supervised learning on unlabeled conversational datasets to boost the model's context understanding. Additionally, we introduce a sampling strategy for negative sample augmentation to enhance context vectors' discriminability. This is the first attempt to integrate contrastive learning into CSS. We conduct ablation studies on different contrastive learning strategies and comprehensive experiments in comparison with prior CSS systems. Results demonstrate that the synthesized speech from our proposed method exhibits more contextually appropriate and sensitive prosody.
Abstract:Audio driven talking head synthesis is a challenging task that attracts increasing attention in recent years. Although existing methods based on 2D landmarks or 3D face models can synthesize accurate lip synchronization and rhythmic head pose for arbitrary identity, they still have limitations, such as the cut feeling in the mouth mapping and the lack of skin highlights. The morphed region is blurry compared to the surrounding face. A Keypoint Based Enhancement (KPBE) method is proposed for audio driven free view talking head synthesis to improve the naturalness of the generated video. Firstly, existing methods were used as the backend to synthesize intermediate results. Then we used keypoint decomposition to extract video synthesis controlling parameters from the backend output and the source image. After that, the controlling parameters were composited to the source keypoints and the driving keypoints. A motion field based method was used to generate the final image from the keypoint representation. With keypoint representation, we overcame the cut feeling in the mouth mapping and the lack of skin highlights. Experiments show that our proposed enhancement method improved the quality of talking-head videos in terms of mean opinion score.
Abstract:In recent years, neural network based methods for multi-speaker text-to-speech synthesis (TTS) have made significant progress. However, the current speaker encoder models used in these methods still cannot capture enough speaker information. In this paper, we focus on accurate speaker encoder modeling and propose an end-to-end method that can generate high-quality speech and better similarity for both seen and unseen speakers. The proposed architecture consists of three separately trained components: a speaker encoder based on the state-of-the-art ECAPA-TDNN model which is derived from speaker verification task, a FastSpeech2 based synthesizer, and a HiFi-GAN vocoder. The comparison among different speaker encoder models shows our proposed method can achieve better naturalness and similarity. To efficiently evaluate our synthesized speech, we are the first to adopt deep learning based automatic MOS evaluation methods to assess our results, and these methods show great potential in automatic speech quality assessment.