Abstract:To address the limitation in multimodal emotion recognition (MER) performance arising from inter-modal information fusion, we propose a novel MER framework based on multitask learning where fusion occurs after alignment, called Foal-Net. The framework is designed to enhance the effectiveness of modality fusion and includes two auxiliary tasks: audio-video emotion alignment (AVEL) and cross-modal emotion label matching (MEM). First, AVEL achieves alignment of emotional information in audio-video representations through contrastive learning. Then, a modal fusion network integrates the aligned features. Meanwhile, MEM assesses whether the emotions of the current sample pair are the same, providing assistance for modal information fusion and guiding the model to focus more on emotional information. The experimental results conducted on IEMOCAP corpus show that Foal-Net outperforms the state-of-the-art methods and emotion alignment is necessary before modal fusion.
Abstract:Diffusion-based singing voice conversion (SVC) models have shown better synthesis quality compared to traditional methods. However, in cross-domain SVC scenarios, where there is a significant disparity in pitch between the source and target voice domains, the models tend to generate audios with hoarseness, posing challenges in achieving high-quality vocal outputs. Therefore, in this paper, we propose a Self-supervised Pitch Augmentation method for Singing Voice Conversion (SPA-SVC), which can enhance the voice quality in SVC tasks without requiring additional data or increasing model parameters. We innovatively introduce a cycle pitch shifting training strategy and Structural Similarity Index (SSIM) loss into our SVC model, effectively enhancing its performance. Experimental results on the public singing datasets M4Singer indicate that our proposed method significantly improves model performance in both general SVC scenarios and particularly in cross-domain SVC scenarios.
Abstract:Recent advances in large language models (LLMs) and development of audio codecs greatly propel the zero-shot TTS. They can synthesize personalized speech with only a 3-second speech of an unseen speaker as acoustic prompt. However, they only support short speech prompts and cannot leverage longer context information, as required in audiobook and conversational TTS scenarios. In this paper, we introduce a novel audio codec-based TTS model to adapt context features with multiple enhancements. Inspired by the success of Qformer, we propose a multi-modal context-enhanced Qformer (MMCE-Qformer) to utilize additional multi-modal context information. Besides, we adapt a pretrained LLM to leverage its understanding ability to predict semantic tokens, and use a SoundStorm to generate acoustic tokens thereby enhancing audio quality and speaker similarity. The extensive objective and subjective evaluations show that our proposed method outperforms baselines across various context TTS scenarios.
Abstract:Recent prompt-based text-to-speech (TTS) models can clone an unseen speaker using only a short speech prompt. They leverage a strong in-context ability to mimic the speech prompts, including speaker style, prosody, and emotion. Therefore, the selection of a speech prompt greatly influences the generated speech, akin to the importance of a prompt in large language models (LLMs). However, current prompt-based TTS models choose the speech prompt manually or simply at random. Hence, in this paper, we adapt retrieval augmented generation (RAG) from LLMs to prompt-based TTS. Unlike traditional RAG methods, we additionally consider contextual information during the retrieval process and present a Context-Aware Contrastive Language-Audio Pre-training (CA-CLAP) model to extract context-aware, style-related features. The objective and subjective evaluations demonstrate that our proposed RAG method outperforms baselines, and our CA-CLAP achieves better results than text-only retrieval methods.
Abstract:Recent advancements in diffusion models and large language models (LLMs) have significantly propelled the field of AIGC. Text-to-Audio (TTA), a burgeoning AIGC application designed to generate audio from natural language prompts, is attracting increasing attention. However, existing TTA studies often struggle with generation quality and text-audio alignment, especially for complex textual inputs. Drawing inspiration from state-of-the-art Text-to-Image (T2I) diffusion models, we introduce Auffusion, a TTA system adapting T2I model frameworks to TTA task, by effectively leveraging their inherent generative strengths and precise cross-modal alignment. Our objective and subjective evaluations demonstrate that Auffusion surpasses previous TTA approaches using limited data and computational resource. Furthermore, previous studies in T2I recognizes the significant impact of encoder choice on cross-modal alignment, like fine-grained details and object bindings, while similar evaluation is lacking in prior TTA works. Through comprehensive ablation studies and innovative cross-attention map visualizations, we provide insightful assessments of text-audio alignment in TTA. Our findings reveal Auffusion's superior capability in generating audios that accurately match textual descriptions, which further demonstrated in several related tasks, such as audio style transfer, inpainting and other manipulations. Our implementation and demos are available at https://auffusion.github.io.
Abstract:Speech emotion recognition (SER) systems aim to recognize human emotional state during human-computer interaction. Most existing SER systems are trained based on utterance-level labels. However, not all frames in an audio have affective states consistent with utterance-level label, which makes it difficult for the model to distinguish the true emotion of the audio and perform poorly. To address this problem, we propose a frame-level emotional state alignment method for SER. First, we fine-tune HuBERT model to obtain a SER system with task-adaptive pretraining (TAPT) method, and extract embeddings from its transformer layers to form frame-level pseudo-emotion labels with clustering. Then, the pseudo labels are used to pretrain HuBERT. Hence, the each frame output of HuBERT has corresponding emotional information. Finally, we fine-tune the above pretrained HuBERT for SER by adding an attention layer on the top of it, which can focus only on those frames that are emotionally more consistent with utterance-level label. The experimental results performed on IEMOCAP indicate that our proposed method performs better than state-of-the-art (SOTA) methods.
Abstract:Conversational speech synthesis (CSS) incorporates historical dialogue as supplementary information with the aim of generating speech that has dialogue-appropriate prosody. While previous methods have already delved into enhancing context comprehension, context representation still lacks effective representation capabilities and context-sensitive discriminability. In this paper, we introduce a contrastive learning-based CSS framework, CONCSS. Within this framework, we define an innovative pretext task specific to CSS that enables the model to perform self-supervised learning on unlabeled conversational datasets to boost the model's context understanding. Additionally, we introduce a sampling strategy for negative sample augmentation to enhance context vectors' discriminability. This is the first attempt to integrate contrastive learning into CSS. We conduct ablation studies on different contrastive learning strategies and comprehensive experiments in comparison with prior CSS systems. Results demonstrate that the synthesized speech from our proposed method exhibits more contextually appropriate and sensitive prosody.
Abstract:People have long hoped for a conversational system that can assist in real-life situations, and recent progress on large language models (LLMs) is bringing this idea closer to reality. While LLMs are often impressive in performance, their efficacy in real-world scenarios that demand expert knowledge remains unclear. LLMs are believed to hold the most potential and value in education, especially in the development of Artificial intelligence (AI) based virtual teachers capable of facilitating language learning. Our focus is centered on evaluating the efficacy of LLMs in the realm of education, specifically in the areas of spoken language learning which encompass phonetics, phonology, and second language acquisition. We introduce a new multiple-choice question dataset to evaluate the effectiveness of LLMs in the aforementioned scenarios, including understanding and application of spoken language knowledge. In addition, we investigate the influence of various prompting techniques such as zero- and few-shot method (prepending the question with question-answer exemplars), chain-of-thought (CoT, think step-by-step), in-domain exampler and external tools (Google, Wikipedia). We conducted large-scale evaluation on popular LLMs (20 distinct models) using these methods. We achieved significant performance improvements compared to the zero-shot baseline in the practical questions reasoning (GPT-3.5, 49.1% -> 63.1%; LLaMA2-70B-Chat, 42.2% -> 48.6%). We found that models of different sizes have good understanding of concepts in phonetics, phonology, and second language acquisition, but show limitations in reasoning for real-world problems. Additionally, we also explore preliminary findings on conversational communication.
Abstract:Conversational text-to-speech (TTS) aims to synthesize speech with proper prosody of reply based on the historical conversation. However, it is still a challenge to comprehensively model the conversation, and a majority of conversational TTS systems only focus on extracting global information and omit local prosody features, which contain important fine-grained information like keywords and emphasis. Moreover, it is insufficient to only consider the textual features, and acoustic features also contain various prosody information. Hence, we propose M2-CTTS, an end-to-end multi-scale multi-modal conversational text-to-speech system, aiming to comprehensively utilize historical conversation and enhance prosodic expression. More specifically, we design a textual context module and an acoustic context module with both coarse-grained and fine-grained modeling. Experimental results demonstrate that our model mixed with fine-grained context information and additionally considering acoustic features achieves better prosody performance and naturalness in CMOS tests.
Abstract:Audio driven talking head synthesis is a challenging task that attracts increasing attention in recent years. Although existing methods based on 2D landmarks or 3D face models can synthesize accurate lip synchronization and rhythmic head pose for arbitrary identity, they still have limitations, such as the cut feeling in the mouth mapping and the lack of skin highlights. The morphed region is blurry compared to the surrounding face. A Keypoint Based Enhancement (KPBE) method is proposed for audio driven free view talking head synthesis to improve the naturalness of the generated video. Firstly, existing methods were used as the backend to synthesize intermediate results. Then we used keypoint decomposition to extract video synthesis controlling parameters from the backend output and the source image. After that, the controlling parameters were composited to the source keypoints and the driving keypoints. A motion field based method was used to generate the final image from the keypoint representation. With keypoint representation, we overcame the cut feeling in the mouth mapping and the lack of skin highlights. Experiments show that our proposed enhancement method improved the quality of talking-head videos in terms of mean opinion score.