Abstract:The Origin-Destination~(OD) networks provide an estimation of the flow of people from every region to others in the city, which is an important research topic in transportation, urban simulation, etc. Given structural regional urban features, generating the OD network has become increasingly appealing to many researchers from diverse domains. However, existing works are limited in independent generation of each OD pair, i.e., flow of people from one region to another, overlooking the relations within the overall network. In this paper, we instead propose to generate the OD network, and design a graph denoising diffusion method to learn the conditional joint probability distribution of the nodes and edges within the OD network given city characteristics at region level. To overcome the learning difficulty of the OD networks covering over thousands of regions, we decompose the original one-shot generative modeling of the diffusion model into two cascaded stages, corresponding to the generation of network topology and the weights of edges, respectively. To further reproduce important network properties contained in the city-wide OD network, we design an elaborated graph denoising network structure including a node property augmentation module and a graph transformer backbone. Empirical experiments on data collected in three large US cities have verified that our method can generate OD matrices for new cities with network statistics remarkably similar with the ground truth, further achieving superior outperformance over competitive baselines in terms of the generation realism.
Abstract:Origin-destination (OD) flow, which contains valuable population mobility information including direction and volume, is critical in many urban applications, such as urban planning, transportation management, etc. However, OD data is not always easy to access due to high costs or privacy concerns. Therefore, we must consider generating OD through mathematical models. Existing works utilize physics laws or machine learning (ML) models to build the association between urban structures and OD flows while these two kinds of methods suffer from the limitation of over-simplicity and poor generalization ability, respectively. In this paper, we propose to adopt physics-informed ML paradigm, which couple the physics scientific knowledge and data-driven ML methods, to construct a model named Origin-Destination Generation Networks (ODGN) for better population mobility modeling by leveraging the complementary strengths of combining physics and ML methods. Specifically, we first build a Multi-view Graph Attention Networks (MGAT) to capture the urban features of every region and then use a gravity-guided predictor to obtain OD flow between every two regions. Furthermore, we use a conditional GAN training strategy and design a sequence-based discriminator to consider the overall topological features of OD as a network. Extensive experiments on real-world datasets have been done to demonstrate the superiority of our proposed method compared with baselines.