Abstract:We present Pangu Ultra, a Large Language Model (LLM) with 135 billion parameters and dense Transformer modules trained on Ascend Neural Processing Units (NPUs). Although the field of LLM has been witnessing unprecedented advances in pushing the scale and capability of LLM in recent years, training such a large-scale model still involves significant optimization and system challenges. To stabilize the training process, we propose depth-scaled sandwich normalization, which effectively eliminates loss spikes during the training process of deep models. We pre-train our model on 13.2 trillion diverse and high-quality tokens and further enhance its reasoning capabilities during post-training. To perform such large-scale training efficiently, we utilize 8,192 Ascend NPUs with a series of system optimizations. Evaluations on multiple diverse benchmarks indicate that Pangu Ultra significantly advances the state-of-the-art capabilities of dense LLMs such as Llama 405B and Mistral Large 2, and even achieves competitive results with DeepSeek-R1, whose sparse model structure contains much more parameters. Our exploration demonstrates that Ascend NPUs are capable of efficiently and effectively training dense models with more than 100 billion parameters. Our model and system will be available for our commercial customers.
Abstract:Understanding collaborative writing dynamics between native speakers (NS) and non-native speakers (NNS) is critical for enhancing collaboration quality and team inclusivity. In this paper, we partnered with communication researchers to develop visual analytics solutions for comparing NS and NNS behaviors in 162 writing sessions across 27 teams. The primary challenges in analyzing writing behaviors are data complexity and the uncertainties introduced by automated methods. In response, we present \textsc{COALA}, a novel visual analytics tool that improves model interpretability by displaying uncertainties in author clusters, generating behavior summaries using large language models, and visualizing writing-related actions at multiple granularities. We validated the effectiveness of \textsc{COALA} through user studies with domain experts (N=2+2) and researchers with relevant experience (N=8). We present the insights discovered by participants using \textsc{COALA}, suggest features for future AI-assisted collaborative writing tools, and discuss the broader implications for analyzing collaborative processes beyond writing.
Abstract:Automatically generating data visualizations in response to human utterances on datasets necessitates a deep semantic understanding of the data utterance, including implicit and explicit references to data attributes, visualization tasks, and necessary data preparation steps. Natural Language Interfaces (NLIs) for data visualization have explored ways to infer such information, yet challenges persist due to inherent uncertainty in human speech. Recent advances in Large Language Models (LLMs) provide an avenue to address these challenges, but their ability to extract the relevant semantic information remains unexplored. In this study, we evaluate four publicly available LLMs (GPT-4, Gemini-Pro, Llama3, and Mixtral), investigating their ability to comprehend utterances even in the presence of uncertainty and identify the relevant data context and visual tasks. Our findings reveal that LLMs are sensitive to uncertainties in utterances. Despite this sensitivity, they are able to extract the relevant data context. However, LLMs struggle with inferring visualization tasks. Based on these results, we highlight future research directions on using LLMs for visualization generation.
Abstract:The Sustainable Development Goals (SDGs) aim to resolve societal challenges, such as eradicating poverty and improving the lives of vulnerable populations in impoverished areas. Those areas rely on road infrastructure construction to promote accessibility and economic development. Although publicly available data like OpenStreetMap is available to monitor road status, data completeness in impoverished areas is limited. Meanwhile, the development of deep learning techniques and satellite imagery shows excellent potential for earth monitoring. To tackle the challenge of road network assessment in impoverished areas, we develop a systematic road extraction framework combining an encoder-decoder architecture and morphological operations on satellite imagery, offering an integrated workflow for interdisciplinary researchers. Extensive experiments of road network extraction on real-world data in impoverished regions achieve a 42.7% enhancement in the F1-score over the baseline methods and reconstruct about 80% of the actual roads. We also propose a comprehensive road network dataset covering approximately 794,178 km2 area and 17.048 million people in 382 impoverished counties in China. The generated dataset is further utilized to conduct socioeconomic analysis in impoverished counties, showing that road network construction positively impacts regional economic development. The technical appendix, code, and generated dataset can be found at https://github.com/tsinghua-fib-lab/Road_network_extraction_impoverished_counties.
Abstract:Large Language Models (LLMs) have demonstrated remarkable abilities in general scenarios. Instruction finetuning empowers them to align with humans in various tasks. Nevertheless, the Diversity and Quality of the instruction data remain two main challenges for instruction finetuning. With regard to this, in this paper, we propose a novel gradient-based method to automatically select high-quality and diverse instruction finetuning data for machine translation. Our key innovation centers around analyzing how individual training examples influence the model during training. Specifically, we select training examples that exert beneficial influences on the model as high-quality ones by means of Influence Function plus a small high-quality seed dataset. Moreover, to enhance the diversity of the training data we maximize the variety of influences they have on the model by clustering on their gradients and resampling. Extensive experiments on WMT22 and FLORES translation tasks demonstrate the superiority of our methods, and in-depth analysis further validates their effectiveness and generalization.
Abstract:Non-native English speakers (NNES) face challenges in digital workspace communication (e.g., emails, Slack messages), often inadvertently translating expressions from their native languages, which can lead to awkward or incorrect usage. Current AI-assisted writing tools are equipped with fluency enhancement and rewriting suggestions; however, NNES may struggle to grasp the subtleties among various expressions, making it challenging to choose the one that accurately reflects their intent. Such challenges are exacerbated in high-stake text-based communications, where the absence of non-verbal cues heightens the risk of misinterpretation. By leveraging the latest advancements in large language models (LLM) and word embeddings, we propose WordDecipher, an explainable AI-assisted writing tool to enhance digital workspace communication for NNES. WordDecipher not only identifies the perceived social intentions detected in users' writing, but also generates rewriting suggestions aligned with users' intended messages, either numerically or by inferring from users' writing in their native language. Then, WordDecipher provides an overview of nuances to help NNES make selections. Through a usage scenario, we demonstrate how WordDecipher can significantly enhance an NNES's ability to communicate her request, showcasing its potential to transform workspace communication for NNES.
Abstract:Generative image models have emerged as a promising technology to produce realistic images. Despite potential benefits, concerns grow about its misuse, particularly in generating deceptive images that could raise significant ethical, legal, and societal issues. Consequently, there is growing demand to empower users to effectively discern and comprehend patterns of AI-generated images. To this end, we developed ASAP, an interactive visualization system that automatically extracts distinct patterns of AI-generated images and allows users to interactively explore them via various views. To uncover fake patterns, ASAP introduces a novel image encoder, adapted from CLIP, which transforms images into compact "distilled" representations, enriched with information for differentiating authentic and fake images. These representations generate gradients that propagate back to the attention maps of CLIP's transformer block. This process quantifies the relative importance of each pixel to image authenticity or fakeness, exposing key deceptive patterns. ASAP enables the at scale interactive analysis of these patterns through multiple, coordinated visualizations. This includes a representation overview with innovative cell glyphs to aid in the exploration and qualitative evaluation of fake patterns across a vast array of images, as well as a pattern view that displays authenticity-indicating patterns in images and quantifies their impact. ASAP supports the analysis of cutting-edge generative models with the latest architectures, including GAN-based models like proGAN and diffusion models like the latent diffusion model. We demonstrate ASAP's usefulness through two usage scenarios using multiple fake image detection benchmark datasets, revealing its ability to identify and understand hidden patterns in AI-generated images, especially in detecting fake human faces produced by diffusion-based techniques.
Abstract:In an effort to reduce the computational load of Transformers, research on linear attention has gained significant momentum. However, the improvement strategies for attention mechanisms typically necessitate extensive retraining, which is impractical for large language models with a vast array of parameters. In this paper, we present DiJiang, a novel Frequency Domain Kernelization approach that enables the transformation of a pre-trained vanilla Transformer into a linear complexity model with little training costs. By employing a weighted Quasi-Monte Carlo method for sampling, the proposed approach theoretically offers superior approximation efficiency. To further reduce the training computational complexity, our kernelization is based on Discrete Cosine Transform (DCT) operations. Extensive experiments demonstrate that the proposed method achieves comparable performance to the original Transformer, but with significantly reduced training costs and much faster inference speeds. Our DiJiang-7B achieves comparable performance with LLaMA2-7B on various benchmark while requires only about 1/50 training cost. Code is available at https://github.com/YuchuanTian/DiJiang.
Abstract:Mixed-media tutorials, which integrate videos, images, text, and diagrams to teach procedural skills, offer more browsable alternatives than timeline-based videos. However, manually creating such tutorials is tedious, and existing automated solutions are often restricted to a particular domain. While AI models hold promise, it is unclear how to effectively harness their powers, given the multi-modal data involved and the vast landscape of models. We present TutoAI, a cross-domain framework for AI-assisted mixed-media tutorial creation on physical tasks. First, we distill common tutorial components by surveying existing work; then, we present an approach to identify, assemble, and evaluate AI models for component extraction; finally, we propose guidelines for designing user interfaces (UI) that support tutorial creation based on AI-generated components. We show that TutoAI has achieved higher or similar quality compared to a baseline model in preliminary user studies.
Abstract:Large Language Models (LLMs) can play a vital role in psychotherapy by adeptly handling the crucial task of cognitive reframing and overcoming challenges such as shame, distrust, therapist skill variability, and resource scarcity. Previous LLMs in cognitive reframing mainly converted negative emotions to positive ones, but these approaches have limited efficacy, often not promoting clients' self-discovery of alternative perspectives. In this paper, we unveil the Helping and Empowering through Adaptive Language in Mental Enhancement (HealMe) model. This novel cognitive reframing therapy method effectively addresses deep-rooted negative thoughts and fosters rational, balanced perspectives. Diverging from traditional LLM methods, HealMe employs empathetic dialogue based on psychotherapeutic frameworks. It systematically guides clients through distinguishing circumstances from feelings, brainstorming alternative viewpoints, and developing empathetic, actionable suggestions. Moreover, we adopt the first comprehensive and expertly crafted psychological evaluation metrics, specifically designed to rigorously assess the performance of cognitive reframing, in both AI-simulated dialogues and real-world therapeutic conversations. Experimental results show that our model outperforms others in terms of empathy, guidance, and logical coherence, demonstrating its effectiveness and potential positive impact on psychotherapy.