Abstract:Understanding collaborative writing dynamics between native speakers (NS) and non-native speakers (NNS) is critical for enhancing collaboration quality and team inclusivity. In this paper, we partnered with communication researchers to develop visual analytics solutions for comparing NS and NNS behaviors in 162 writing sessions across 27 teams. The primary challenges in analyzing writing behaviors are data complexity and the uncertainties introduced by automated methods. In response, we present \textsc{COALA}, a novel visual analytics tool that improves model interpretability by displaying uncertainties in author clusters, generating behavior summaries using large language models, and visualizing writing-related actions at multiple granularities. We validated the effectiveness of \textsc{COALA} through user studies with domain experts (N=2+2) and researchers with relevant experience (N=8). We present the insights discovered by participants using \textsc{COALA}, suggest features for future AI-assisted collaborative writing tools, and discuss the broader implications for analyzing collaborative processes beyond writing.
Abstract:Non-native English speakers (NNES) face challenges in digital workspace communication (e.g., emails, Slack messages), often inadvertently translating expressions from their native languages, which can lead to awkward or incorrect usage. Current AI-assisted writing tools are equipped with fluency enhancement and rewriting suggestions; however, NNES may struggle to grasp the subtleties among various expressions, making it challenging to choose the one that accurately reflects their intent. Such challenges are exacerbated in high-stake text-based communications, where the absence of non-verbal cues heightens the risk of misinterpretation. By leveraging the latest advancements in large language models (LLM) and word embeddings, we propose WordDecipher, an explainable AI-assisted writing tool to enhance digital workspace communication for NNES. WordDecipher not only identifies the perceived social intentions detected in users' writing, but also generates rewriting suggestions aligned with users' intended messages, either numerically or by inferring from users' writing in their native language. Then, WordDecipher provides an overview of nuances to help NNES make selections. Through a usage scenario, we demonstrate how WordDecipher can significantly enhance an NNES's ability to communicate her request, showcasing its potential to transform workspace communication for NNES.
Abstract:Mixed-media tutorials, which integrate videos, images, text, and diagrams to teach procedural skills, offer more browsable alternatives than timeline-based videos. However, manually creating such tutorials is tedious, and existing automated solutions are often restricted to a particular domain. While AI models hold promise, it is unclear how to effectively harness their powers, given the multi-modal data involved and the vast landscape of models. We present TutoAI, a cross-domain framework for AI-assisted mixed-media tutorial creation on physical tasks. First, we distill common tutorial components by surveying existing work; then, we present an approach to identify, assemble, and evaluate AI models for component extraction; finally, we propose guidelines for designing user interfaces (UI) that support tutorial creation based on AI-generated components. We show that TutoAI has achieved higher or similar quality compared to a baseline model in preliminary user studies.