Abstract:Object detection models often struggle with class imbalance, where rare categories appear significantly less frequently than common ones. Existing sampling-based rebalancing strategies, such as Repeat Factor Sampling (RFS) and Instance-Aware Repeat Factor Sampling (IRFS), mitigate this issue by adjusting sample frequencies based on image and instance counts. However, these methods are based on linear adjustments, which limit their effectiveness in long-tailed distributions. This work introduces Exponentially Weighted Instance-Aware Repeat Factor Sampling (E-IRFS), an extension of IRFS that applies exponential scaling to better differentiate between rare and frequent classes. E-IRFS adjusts sampling probabilities using an exponential function applied to the geometric mean of image and instance frequencies, ensuring a more adaptive rebalancing strategy. We evaluate E-IRFS on a dataset derived from the Fireman-UAV-RGBT Dataset and four additional public datasets, using YOLOv11 object detection models to identify fire, smoke, people and lakes in emergency scenarios. The results show that E-IRFS improves detection performance by 22\% over the baseline and outperforms RFS and IRFS, particularly for rare categories. The analysis also highlights that E-IRFS has a stronger effect on lightweight models with limited capacity, as these models rely more on data sampling strategies to address class imbalance. The findings demonstrate that E-IRFS improves rare object detection in resource-constrained environments, making it a suitable solution for real-time applications such as UAV-based emergency monitoring.
Abstract:The rapid rise of Language Models (LMs) has expanded the capabilities of natural language processing, powering applications from text generation to complex decision-making. While state-of-the-art LMs often boast hundreds of billions of parameters and are primarily deployed in data centers, recent trends show a growing focus on compact models-typically under 10 billion parameters-enabled by techniques such as quantization and other model compression techniques. This shift paves the way for LMs on edge devices, offering potential benefits such as enhanced privacy, reduced latency, and improved data sovereignty. However, the inherent complexity of even these smaller models, combined with the limited computing resources of edge hardware, raises critical questions about the practical trade-offs in executing LM inference outside the cloud. To address these challenges, we present a comprehensive evaluation of generative LM inference on representative CPU-based and GPU-accelerated edge devices. Our study measures key performance indicators-including memory usage, inference speed, and energy consumption-across various device configurations. Additionally, we examine throughput-energy trade-offs, cost considerations, and usability, alongside an assessment of qualitative model performance. While quantization helps mitigate memory overhead, it does not fully eliminate resource bottlenecks, especially for larger models. Our findings quantify the memory and energy constraints that must be considered for practical real-world deployments, offering concrete insights into the trade-offs between model size, inference performance, and efficiency. The exploration of LMs at the edge is still in its early stages. We hope this study provides a foundation for future research, guiding the refinement of models, the enhancement of inference efficiency, and the advancement of edge-centric AI systems.
Abstract:This paper presents the development and evaluation of a Large Language Model (LLM), also known as foundation models, based multi-agent system framework for complex event processing (CEP) with a focus on video query processing use cases. The primary goal is to create a proof-of-concept (POC) that integrates state-of-the-art LLM orchestration frameworks with publish/subscribe (pub/sub) tools to address the integration of LLMs with current CEP systems. Utilizing the Autogen framework in conjunction with Kafka message brokers, the system demonstrates an autonomous CEP pipeline capable of handling complex workflows. Extensive experiments evaluate the system's performance across varying configurations, complexities, and video resolutions, revealing the trade-offs between functionality and latency. The results show that while higher agent count and video complexities increase latency, the system maintains high consistency in narrative coherence. This research builds upon and contributes to, existing novel approaches to distributed AI systems, offering detailed insights into integrating such systems into existing infrastructures.
Abstract:Smart spaces are ubiquitous computing environments that integrate diverse sensing and communication technologies to enhance space functionality, optimize energy utilization, and improve user comfort and well-being. The integration of emerging AI methodologies into these environments facilitates the formation of AI-driven smart spaces, which further enhance functionalities of the spaces by enabling advanced applications such as personalized comfort settings, interactive living spaces, and automatization of the space systems, all resulting in enhanced indoor experiences of the users. In this paper, we present a systematic survey of existing research on the foundational components of AI-driven smart spaces, including sensor technologies, data communication protocols, sensor network management and maintenance strategies, as well as the data collection, processing and analytics. Given the pivotal role of AI in establishing AI-powered smart spaces, we explore the opportunities and challenges associated with traditional machine learning (ML) approaches, such as deep learning (DL), and emerging methodologies including large language models (LLMs). Finally, we provide key insights necessary for the development of AI-driven smart spaces, propose future research directions, and sheds light on the path forward.
Abstract:Digital Twins (DTs) are set to become a key enabling technology in future wireless networks, with their use in network management increasing significantly. We developed a DT framework that leverages the heterogeneity of network access technologies as a resource for enhanced network performance and management, enabling smart data handling in the physical network. Tested in a \textit{Campus Area Network} environment, our framework integrates diverse data sources to provide real-time, holistic insights into network performance and environmental sensing. We also envision that traditional analytics will evolve to rely on emerging AI models, such as Generative AI (GenAI), while leveraging current analytics capabilities. This capacity can simplify analytics processes through advanced ML models, enabling descriptive, diagnostic, predictive, and prescriptive analytics in a unified fashion. Finally, we present specific research opportunities concerning interoperability aspects and envision aligning advancements in DT technology with evolved AI integration.
Abstract:The Sustainable Development Goals (SDGs) aim to resolve societal challenges, such as eradicating poverty and improving the lives of vulnerable populations in impoverished areas. Those areas rely on road infrastructure construction to promote accessibility and economic development. Although publicly available data like OpenStreetMap is available to monitor road status, data completeness in impoverished areas is limited. Meanwhile, the development of deep learning techniques and satellite imagery shows excellent potential for earth monitoring. To tackle the challenge of road network assessment in impoverished areas, we develop a systematic road extraction framework combining an encoder-decoder architecture and morphological operations on satellite imagery, offering an integrated workflow for interdisciplinary researchers. Extensive experiments of road network extraction on real-world data in impoverished regions achieve a 42.7% enhancement in the F1-score over the baseline methods and reconstruct about 80% of the actual roads. We also propose a comprehensive road network dataset covering approximately 794,178 km2 area and 17.048 million people in 382 impoverished counties in China. The generated dataset is further utilized to conduct socioeconomic analysis in impoverished counties, showing that road network construction positively impacts regional economic development. The technical appendix, code, and generated dataset can be found at https://github.com/tsinghua-fib-lab/Road_network_extraction_impoverished_counties.
Abstract:The evolution towards 6G architecture promises a transformative shift in communication networks, with artificial intelligence (AI) playing a pivotal role. This paper delves deep into the seamless integration of Large Language Models (LLMs) and Generalized Pretrained Transformers (GPT) within 6G systems. Their ability to grasp intent, strategize, and execute intricate commands will be pivotal in redefining network functionalities and interactions. Central to this is the AI Interconnect framework, intricately woven to facilitate AI-centric operations within the network. Building on the continuously evolving current state-of-the-art, we present a new architectural perspective for the upcoming generation of mobile networks. Here, LLMs and GPTs will collaboratively take center stage alongside traditional pre-generative AI and machine learning (ML) algorithms. This union promises a novel confluence of the old and new, melding tried-and-tested methods with transformative AI technologies. Along with providing a conceptual overview of this evolution, we delve into the nuances of practical applications arising from such an integration. Through this paper, we envisage a symbiotic integration where AI becomes the cornerstone of the next-generation communication paradigm, offering insights into the structural and functional facets of an AI-native 6G network.
Abstract:The growing number of AI-driven applications in the mobile devices has led to solutions that integrate deep learning models with the available edge-cloud resources; due to multiple benefits such as reduction in on-device energy consumption, improved latency, improved network usage, and certain privacy improvements, split learning, where deep learning models are split away from the mobile device and computed in a distributed manner, has become an extensively explored topic. Combined with compression-aware methods where learning adapts to compression of communicated data, the benefits of this approach have further improved and could serve as an alternative to established approaches like federated learning methods. In this work, we develop an adaptive compression-aware split learning method ('deprune') to improve and train deep learning models so that they are much more network-efficient (use less network resources and are faster), which would make them ideal to deploy in weaker devices with the help of edge-cloud resources. This method is also extended ('prune') to very quickly train deep learning models, through a transfer learning approach, that trades off little accuracy for much more network-efficient inference abilities. We show that the 'deprune' method can reduce network usage by 4x when compared with a split-learning approach (that does not use our method) without loss of accuracy, while also improving accuracy over compression-aware split-learning by 4 percent. Lastly, we show that the 'prune' method can reduce the training time for certain models by up to 6x without affecting the accuracy when compared against a compression-aware split-learning approach.
Abstract:The network edge's role in Artificial Intelligence (AI) inference processing is rapidly expanding, driven by a plethora of applications seeking computational advantages. These applications strive for data-driven efficiency, leveraging robust AI capabilities and prioritizing real-time responsiveness. However, as demand grows, so does system complexity. The proliferation of AI inference accelerators showcases innovation but also underscores challenges, particularly the varied software and hardware configurations of these devices. This diversity, while advantageous for certain tasks, introduces hurdles in device integration and coordination. In this paper, our objectives are three-fold. Firstly, we outline the requirements and components of a framework that accommodates hardware diversity. Next, we assess the impact of device heterogeneity on AI inference performance, identifying strategies to optimize outcomes without compromising service quality. Lastly, we shed light on the prevailing challenges and opportunities in this domain, offering insights for both the research community and industry stakeholders.
Abstract:Cities play an important role in achieving sustainable development goals (SDGs) to promote economic growth and meet social needs. Especially satellite imagery is a potential data source for studying sustainable urban development. However, a comprehensive dataset in the United States (U.S.) covering multiple cities, multiple years, multiple scales, and multiple indicators for SDG monitoring is lacking. To support the research on SDGs in U.S. cities, we develop a satellite imagery dataset using deep learning models for five SDGs containing 25 sustainable development indicators. The proposed dataset covers the 100 most populated U.S. cities and corresponding Census Block Groups from 2014 to 2023. Specifically, we collect satellite imagery and identify objects with state-of-the-art object detection and semantic segmentation models to observe cities' bird's-eye view. We further gather population, nighttime light, survey, and built environment data to depict SDGs regarding poverty, health, education, inequality, and living environment. We anticipate the dataset to help urban policymakers and researchers to advance SDGs-related studies, especially applying satellite imagery to monitor long-term and multi-scale SDGs in cities.