Abstract:Smart spaces are ubiquitous computing environments that integrate diverse sensing and communication technologies to enhance space functionality, optimize energy utilization, and improve user comfort and well-being. The integration of emerging AI methodologies into these environments facilitates the formation of AI-driven smart spaces, which further enhance functionalities of the spaces by enabling advanced applications such as personalized comfort settings, interactive living spaces, and automatization of the space systems, all resulting in enhanced indoor experiences of the users. In this paper, we present a systematic survey of existing research on the foundational components of AI-driven smart spaces, including sensor technologies, data communication protocols, sensor network management and maintenance strategies, as well as the data collection, processing and analytics. Given the pivotal role of AI in establishing AI-powered smart spaces, we explore the opportunities and challenges associated with traditional machine learning (ML) approaches, such as deep learning (DL), and emerging methodologies including large language models (LLMs). Finally, we provide key insights necessary for the development of AI-driven smart spaces, propose future research directions, and sheds light on the path forward.
Abstract:This article introduces Follow-Me AI, a concept designed to enhance user interactions with smart environments, optimize energy use, and provide better control over data captured by these environments. Through AI agents that accompany users, Follow-Me AI negotiates data management based on user consent, aligns environmental controls as well as user communication and computes resources available in the environment with user preferences, and predicts user behavior to proactively adjust the smart environment. The manuscript illustrates this concept with a detailed example of Follow-Me AI in a smart campus setting, detailing the interactions with the building's management system for optimal comfort and efficiency. Finally, this article looks into the challenges and opportunities related to Follow-Me AI.
Abstract:Future AI applications require performance, reliability and privacy that the existing, cloud-dependant system architectures cannot provide. In this article, we study orchestration in the device-edge-cloud continuum, and focus on AI for edge, that is, the AI methods used in resource orchestration. We claim that to support the constantly growing requirements of intelligent applications in the device-edge-cloud computing continuum, resource orchestration needs to embrace edge AI and emphasize local autonomy and intelligence. To justify the claim, we provide a general definition for continuum orchestration, and look at how current and emerging orchestration paradigms are suitable for the computing continuum. We describe certain major emerging research themes that may affect future orchestration, and provide an early vision of an orchestration paradigm that embraces those research themes. Finally, we survey current key edge AI methods and look at how they may contribute into fulfilling the vision of future continuum orchestration.