Abstract:The current scenario of IoT is witnessing a constant increase on the volume of data, which is generated in constant stream, calling for novel architectural and logical solutions for processing it. Moving the data handling towards the edge of the computing spectrum guarantees better distribution of load and, in principle, lower latency and better privacy. However, managing such a structure is complex, especially when requirements, also referred to Service Level Objectives (SLOs), specified by applications' owners and infrastructure managers need to be ensured. Despite the rich number of proposals of Machine Learning (ML) based management solutions, researchers and practitioners yet struggle to guarantee long-term prediction and control, and accurate troubleshooting. Therefore, we present a novel ML paradigm based on Active Inference (AIF) -- a concept from neuroscience that describes how the brain constantly predicts and evaluates sensory information to decrease long-term surprise. We implement it and evaluate it in a heterogeneous real stream processing use case, where an AIF-based agent continuously optimizes the fulfillment of three SLOs for three autonomous driving services running on multiple devices. The agent used causal knowledge to gradually develop an understanding of how its actions are related to requirements fulfillment, and which configurations to favor. Through this approach, our agent requires up to thirty iterations to converge to the optimal solution, showing the capability of offering accurate results in a short amount of time. Furthermore, thanks to AIF and its causal structures, our method guarantees full transparency on the decision making, making the interpretation of the results and the troubleshooting effortless.
Abstract:This article introduces Follow-Me AI, a concept designed to enhance user interactions with smart environments, optimize energy use, and provide better control over data captured by these environments. Through AI agents that accompany users, Follow-Me AI negotiates data management based on user consent, aligns environmental controls as well as user communication and computes resources available in the environment with user preferences, and predicts user behavior to proactively adjust the smart environment. The manuscript illustrates this concept with a detailed example of Follow-Me AI in a smart campus setting, detailing the interactions with the building's management system for optimal comfort and efficiency. Finally, this article looks into the challenges and opportunities related to Follow-Me AI.
Abstract:Converging Zero Trust (ZT) with learning techniques can solve various operational and security challenges in Distributed Computing Continuum Systems (DCCS). Implementing centralized ZT architecture is seen as unsuitable for the computing continuum (e.g., computing entities with limited connectivity and visibility, etc.). At the same time, implementing decentralized ZT in the computing continuum requires understanding infrastructure limitations and novel approaches to enhance resource access management decisions. To overcome such challenges, we present a novel learning-driven ZT conceptual architecture designed for DCCS. We aim to enhance ZT architecture service quality by incorporating lightweight learning strategies such as Representation Learning (ReL) and distributing ZT components across the computing continuum. The ReL helps to improve the decision-making process by predicting threats or untrusted requests. Through an illustrative example, we show how the learning process detects and blocks the requests, enhances resource access control, and reduces network and computation overheads. Lastly, we discuss the conceptual architecture, processes, and provide a research agenda.
Abstract:Federated Learning (FL) has emerged as a promising paradigm to train machine learning models collaboratively while preserving data privacy. However, its widespread adoption faces several challenges, including scalability, heterogeneous data and devices, resource constraints, and security concerns. Despite its promise, FL has not been specifically adapted for community domains, primarily due to the wide-ranging differences in data types and context, devices and operational conditions, environmental factors, and stakeholders. In response to these challenges, we present a novel framework for Community-based Federated Learning called CommunityAI. CommunityAI enables participants to be organized into communities based on their shared interests, expertise, or data characteristics. Community participants collectively contribute to training and refining learning models while maintaining data and participant privacy within their respective groups. Within this paper, we discuss the conceptual architecture, system requirements, processes, and future challenges that must be solved. Finally, our goal within this paper is to present our vision regarding enabling a collaborative learning process within various communities.
Abstract:Zero-touch network is anticipated to inaugurate the generation of intelligent and highly flexible resource provisioning strategies where multiple service providers collaboratively offer computation and storage resources. This transformation presents substantial challenges to network administration and service providers regarding sustainability and scalability. This article combines Distributed Artificial Intelligence (DAI) with Zero-touch Provisioning (ZTP) for edge networks. This combination helps to manage network devices seamlessly and intelligently by minimizing human intervention. In addition, several advantages are also highlighted that come with incorporating Distributed AI into ZTP in the context of edge networks. Further, we draw potential research directions to foster novel studies in this field and overcome the current limitations.
Abstract:Computing Continuum (CC) systems are challenged to ensure the intricate requirements of each computational tier. Given the system's scale, the Service Level Objectives (SLOs) which are expressed as these requirements, must be broken down into smaller parts that can be decentralized. We present our framework for collaborative edge intelligence enabling individual edge devices to (1) develop a causal understanding of how to enforce their SLOs, and (2) transfer knowledge to speed up the onboarding of heterogeneous devices. Through collaboration, they (3) increase the scope of SLO fulfillment. We implemented the framework and evaluated a use case in which a CC system is responsible for ensuring Quality of Service (QoS) and Quality of Experience (QoE) during video streaming. Our results showed that edge devices required only ten training rounds to ensure four SLOs; furthermore, the underlying causal structures were also rationally explainable. The addition of new types of devices can be done a posteriori, the framework allowed them to reuse existing models, even though the device type had been unknown. Finally, rebalancing the load within a device cluster allowed individual edge devices to recover their SLO compliance after a network failure from 22% to 89%.
Abstract:Compute Continuum (CC) systems comprise a vast number of devices distributed over computational tiers. Evaluating business requirements, i.e., Service Level Objectives (SLOs), requires collecting data from all those devices; if SLOs are violated, devices must be reconfigured to ensure correct operation. If done centrally, this dramatically increases the number of devices and variables that must be considered, while creating an enormous communication overhead. To address this, we (1) introduce a causality filter based on Markov blankets (MB) that limits the number of variables that each device must track, (2) evaluate SLOs decentralized on a device basis, and (3) infer optimal device configuration for fulfilling SLOs. We evaluated our methodology by analyzing video stream transformations and providing device configurations that ensure the Quality of Service (QoS). The devices thus perceived their environment and acted accordingly -- a form of decentralized intelligence.
Abstract:Machine Learning (ML) is a common tool to interpret and predict the behavior of distributed computing systems, e.g., to optimize the task distribution between devices. As more and more data is created by Internet of Things (IoT) devices, data processing and ML training are carried out by edge devices in close proximity. To ensure Quality of Service (QoS) throughout these operations, systems are supervised and dynamically adapted with the help of ML. However, as long as ML models are not retrained, they fail to capture gradual shifts in the variable distribution, leading to an inaccurate view of the system state. Moreover, as the prediction accuracy decreases, the reporting device should actively resolve uncertainties to improve the model's precision. Such a level of self-determination could be provided by Active Inference (ACI) -- a concept from neuroscience that describes how the brain constantly predicts and evaluates sensory information to decrease long-term surprise. We encompassed these concepts in a single action-perception cycle, which we implemented for distributed agents in a smart manufacturing use case. As a result, we showed how our ACI agent was able to quickly and traceably solve an optimization problem while fulfilling QoS requirements.
Abstract:Machine learning typically relies on the assumption that training and testing distributions are identical and that data is centrally stored for training and testing. However, in real-world scenarios, distributions may differ significantly and data is often distributed across different devices, organizations, or edge nodes. Consequently, it is imperative to develop models that can effectively generalize to unseen distributions where data is distributed across different domains. In response to this challenge, there has been a surge of interest in federated domain generalization (FDG) in recent years. FDG combines the strengths of federated learning (FL) and domain generalization (DG) techniques to enable multiple source domains to collaboratively learn a model capable of directly generalizing to unseen domains while preserving data privacy. However, generalizing the federated model under domain shifts is a technically challenging problem that has received scant attention in the research area so far. This paper presents the first survey of recent advances in this area. Initially, we discuss the development process from traditional machine learning to domain adaptation and domain generalization, leading to FDG as well as provide the corresponding formal definition. Then, we categorize recent methodologies into four classes: federated domain alignment, data manipulation, learning strategies, and aggregation optimization, and present suitable algorithms in detail for each category. Next, we introduce commonly used datasets, applications, evaluations, and benchmarks. Finally, we conclude this survey by providing some potential research topics for the future.