Abstract:3D volumetric video provides immersive experience and is gaining traction in digital media. Despite its rising popularity, the streaming of volumetric video content poses significant challenges due to the high data bandwidth requirement. A natural approach to mitigate the bandwidth issue is to reduce the volumetric video's data rate by downsampling the content prior to transmission. The video can then be upsampled at the receiver's end using a super-resolution (SR) algorithm to reconstruct the high-resolution details. While super-resolution techniques have been extensively explored and advanced for 2D video content, there is limited work on SR algorithms tailored for volumetric videos. To address this gap and the growing need for efficient volumetric video streaming, we have developed VoLUT with a new SR algorithm specifically designed for volumetric content. Our algorithm uniquely harnesses the power of lookup tables (LUTs) to facilitate the efficient and accurate upscaling of low-resolution volumetric data. The use of LUTs enables our algorithm to quickly reference precomputed high-resolution values, thereby significantly reducing the computational complexity and time required for upscaling. We further apply adaptive video bit rate algorithm (ABR) to dynamically determine the downsampling rate according to the network condition and stream the selected video rate to the receiver. Compared to related work, VoLUT is the first to enable high-quality 3D SR on commodity mobile devices at line-rate. Our evaluation shows VoLUT can reduce bandwidth usage by 70% , boost QoE by 36.7% for volumetric video streaming and achieve 3D SR speed-up with no quality compromise.
Abstract:With the advancement of Large Language Models (LLMs), increasingly sophisticated and powerful GPTs are entering the market. Despite their popularity, the LLM ecosystem still remains unexplored. Additionally, LLMs' susceptibility to attacks raises concerns over safety and plagiarism. Thus, in this work, we conduct a pioneering exploration of GPT stores, aiming to study vulnerabilities and plagiarism within GPT applications. To begin with, we conduct, to our knowledge, the first large-scale monitoring and analysis of two stores, an unofficial GPTStore.AI, and an official OpenAI GPT Store. Then, we propose a TriLevel GPT Reversing (T-GR) strategy for extracting GPT internals. To complete these two tasks efficiently, we develop two automated tools: one for web scraping and another designed for programmatically interacting with GPTs. Our findings reveal a significant enthusiasm among users and developers for GPT interaction and creation, as evidenced by the rapid increase in GPTs and their creators. However, we also uncover a widespread failure to protect GPT internals, with nearly 90% of system prompts easily accessible, leading to considerable plagiarism and duplication among GPTs.