Abstract:Mobile edge computing (MEC) has been regarded as a promising approach to deal with explosive computation requirements by enabling cloud computing capabilities at the edge of networks. Existing models of MEC impose some strong assumptions on the known processing cycles and unintermittent communications. However, practical MEC systems are constrained by various uncertainties and intermittent communications, rendering these assumptions impractical. In view of this, we investigate how to schedule task offloading in MEC systems with uncertainties. First, we derive a closed-form expression of the average offloading success probability in a device-to-device (D2D) assisted MEC system with uncertain computation processing cycles and intermittent communications. Then, we formulate a task offloading maximization problem (TOMP), and prove that the problem is NP-hard. For problem solving, if the problem instance exhibits a symmetric structure, we propose a task scheduling algorithm based on dynamic programming (TSDP). By solving this problem instance, we derive a bound to benchmark sub-optimal algorithm. For general scenarios, by reformulating the problem, we propose a repeated matching algorithm (RMA). Finally, in performance evaluations, we validate the accuracy of the closed-form expression of the average offloading success probability by Monte Carlo simulations, as well as the effectiveness of the proposed algorithms.
Abstract:Multi-scale detection plays an important role in object detection models. However, researchers usually feel blank on how to reasonably configure detection heads combining multi-scale features at different input resolutions. We find that there are different matching relationships between the object distribution and the detection head at different input resolutions. Based on the instructive findings, we propose a lightweight traffic object detection network based on matching between detection head and object distribution, termed as MHD-Net. It consists of three main parts. The first is the detection head and object distribution matching strategy, which guides the rational configuration of detection head, so as to leverage multi-scale features to effectively detect objects at vastly different scales. The second is the cross-scale detection head configuration guideline, which instructs to replace multiple detection heads with only two detection heads possessing of rich feature representations to achieve an excellent balance between detection accuracy, model parameters, FLOPs and detection speed. The third is the receptive field enlargement method, which combines the dilated convolution module with shallow features of backbone to further improve the detection accuracy at the cost of increasing model parameters very slightly. The proposed model achieves more competitive performance than other models on BDD100K dataset and our proposed ETFOD-v2 dataset. The code will be available.
Abstract:The lane detection is a key problem to solve the division of derivable areas in unmanned driving, and the detection accuracy of lane lines plays an important role in the decision-making of vehicle driving. Scenes faced by vehicles in daily driving are relatively complex. Bright light, insufficient light, and crowded vehicles will bring varying degrees of difficulty to lane detection. So we combine the advantages of spatial convolution in spatial information processing and the efficiency of ERFNet in semantic segmentation, propose an end-to-end network to lane detection in a variety of complex scenes. And we design the information exchange block by combining spatial convolution and dilated convolution, which plays a great role in understanding detailed information. Finally, our network was tested on the CULane database and its F1-measure with IOU threshold of 0.5 can reach 71.9%.
Abstract:Lane detection is one of the indispensable and key elements of self-driving environmental perception. Many lane detection models have been proposed, solving lane detection under challenging conditions, including intersection merging and splitting, curves, boundaries, occlusions and combinations of scene types. Nevertheless, lane detection will remain an open problem for some time to come. The ability to cope well with those challenging scenes impacts greatly the applications of lane detection on advanced driver assistance systems (ADASs). In this paper, a spatio-temporal network with double Convolutional Gated Recurrent Units (ConvGRUs) is proposed to address lane detection in challenging scenes. Both of ConvGRUs have the same structures, but different locations and functions in our network. One is used to extract the information of the most likely low-level features of lane markings. The extracted features are input into the next layer of the end-to-end network after concatenating them with the outputs of some blocks. The other one takes some continuous frames as its input to process the spatio-temporal driving information. Extensive experiments on the large-scale Tusimple lane marking challenge dataset and Unsupervised LLAMAS dataset demonstrate that the proposed model can effectively detect lanes in the challenging driving scenes. Our model can outperform the state-of-the-art lane detection models.
Abstract:Sponsored search has more than 20 years of history, and it has been proven to be a successful business model for online advertising. Based on the pay-per-click pricing model and the keyword targeting technology, the sponsored system runs online auctions to determine the allocations and prices of search advertisements. In the traditional setting, advertisers should manually create lots of ad creatives and bid on some relevant keywords to target their audience. Due to the huge amount of search traffic and a wide variety of ad creations, the limits of manual optimizations from advertisers become the main bottleneck for improving the efficiency of this market. Moreover, as many emerging advertising forms and supplies are growing, it's crucial for sponsored search platform to pay more attention to the ROI metrics of ads for getting the marketing budgets of advertisers. In this paper, we present the AiAds system developed at Baidu, which use machine learning techniques to build an automated and intelligent advertising system. By designing and implementing the automated bidding strategy, the intelligent targeting and the intelligent creation models, the AiAds system can transform the manual optimizations into multiple automated tasks and optimize these tasks in advanced methods. AiAds is a brand-new architecture of sponsored search system which changes the bidding language and allocation mechanism, breaks the limit of keyword targeting with end-to-end ad retrieval framework and provides global optimization of ad creation. This system can increase the advertiser's campaign performance, the user experience and the revenue of the advertising platform simultaneously and significantly. We present the overall architecture and modeling techniques for each module of the system and share our lessons learned in solving several key challenges.
Abstract:Radio-frequency (RF) tomographic imaging is a promising technique for inferring multi-dimensional physical space by processing RF signals traversed across a region of interest. However, conventional RF tomography schemes are generally based on vector compressed sensing, which ignores the geometric structures of the target spaces and leads to low recovery precision. The recently proposed transform-based tensor model is more appropriate for sensory data processing, as it helps exploit the geometric structures of the three-dimensional target and improve the recovery precision. In this paper, we propose a novel tensor sensing approach that achieves highly accurate estimation for real-world three-dimensional spaces. First, we use the transform-based tensor model to formulate a tensor sensing problem, and propose a fast alternating minimization algorithm called Alt-Min. Secondly, we drive an algorithm which is optimized to reduce memory and computation requirements. Finally, we present evaluation of our Alt-Min approach using IKEA 3D data and demonstrate significant improvement in recovery error and convergence speed compared to prior tensor-based compressed sensing.