Abstract:Federated learning, while being a promising approach for collaborative model training, is susceptible to poisoning attacks due to its decentralized nature. Backdoor attacks, in particular, have shown remarkable stealthiness, as they selectively compromise predictions for inputs containing triggers. Previous endeavors to detect and mitigate such attacks are based on the Independent and Identically Distributed (IID) data assumption where benign model updates exhibit high-level similarity in multiple feature spaces due to IID data. Thus, outliers are detected as backdoor attacks. Nevertheless, non-IID data presents substantial challenges in backdoor attack detection, as the data variety introduces variance among benign models, making outlier detection-based mechanisms less effective. We propose a novel distribution-aware anomaly detection mechanism, BoBa, to address this problem. In order to differentiate outliers arising from data variety versus backdoor attack, we propose to break down the problem into two steps: clustering clients utilizing their data distribution followed by a voting-based detection. Based on the intuition that clustering and subsequent backdoor detection can drastically benefit from knowing client data distributions, we propose a novel data distribution inference mechanism. To improve detection robustness, we introduce an overlapping clustering method, where each client is associated with multiple clusters, ensuring that the trustworthiness of a model update is assessed collectively by multiple clusters rather than a single cluster. Through extensive evaluations, we demonstrate that BoBa can reduce the attack success rate to lower than 0.001 while maintaining high main task accuracy across various attack strategies and experimental settings.
Abstract:Despite recent stereo matching networks achieving impressive performance given sufficient training data, they suffer from domain shifts and generalize poorly to unseen domains. We argue that maintaining feature consistency between matching pixels is a vital factor for promoting the generalization capability of stereo matching networks, which has not been adequately considered. Here we address this issue by proposing a simple pixel-wise contrastive learning across the viewpoints. The stereo contrastive feature loss function explicitly constrains the consistency between learned features of matching pixel pairs which are observations of the same 3D points. A stereo selective whitening loss is further introduced to better preserve the stereo feature consistency across domains, which decorrelates stereo features from stereo viewpoint-specific style information. Counter-intuitively, the generalization of feature consistency between two viewpoints in the same scene translates to the generalization of stereo matching performance to unseen domains. Our method is generic in nature as it can be easily embedded into existing stereo networks and does not require access to the samples in the target domain. When trained on synthetic data and generalized to four real-world testing sets, our method achieves superior performance over several state-of-the-art networks.
Abstract:Weakly-Supervised Semantic Segmentation (WSSS) segments objects without a heavy burden of dense annotation. While as a price, generated pseudo-masks exist obvious noisy pixels, which result in sub-optimal segmentation models trained over these pseudo-masks. But rare studies notice or work on this problem, even these noisy pixels are inevitable after their improvements on pseudo-mask. So we try to improve WSSS in the aspect of noise mitigation. And we observe that many noisy pixels are of high confidence, especially when the response range is too wide or narrow, presenting an uncertain status. Thus, in this paper, we simulate noisy variations of response by scaling the prediction map multiple times for uncertainty estimation. The uncertainty is then used to weight the segmentation loss to mitigate noisy supervision signals. We call this method URN, abbreviated from Uncertainty estimation via Response scaling for Noise mitigation. Experiments validate the benefits of URN, and our method achieves state-of-the-art results at 71.2% and 41.5% on PASCAL VOC 2012 and MS COCO 2014 respectively, without extra models like saliency detection. Code is available at https://github.com/XMed-Lab/URN.
Abstract:Most weakly supervised semantic segmentation (WSSS) methods follow the pipeline that generates pseudo-masks initially and trains the segmentation model with the pseudo-masks in fully supervised manner after. However, we find some matters related to the pseudo-masks, including high quality pseudo-masks generation from class activation maps (CAMs), and training with noisy pseudo-mask supervision. For these matters, we propose the following designs to push the performance to new state-of-art: (i) Coefficient of Variation Smoothing to smooth the CAMs adaptively; (ii) Proportional Pseudo-mask Generation to project the expanded CAMs to pseudo-mask based on a new metric indicating the importance of each class on each location, instead of the scores trained from binary classifiers. (iii) Pretended Under-Fitting strategy to suppress the influence of noise in pseudo-mask; (iv) Cyclic Pseudo-mask to boost the pseudo-masks during training of fully supervised semantic segmentation (FSSS). Experiments based on our methods achieve new state-of-art results on two changeling weakly supervised semantic segmentation datasets, pushing the mIoU to 70.0% and 40.2% on PAS-CAL VOC 2012 and MS COCO 2014 respectively. Codes including segmentation framework are released at https://github.com/Eli-YiLi/PMM
Abstract:Network compression has been widely studied since it is able to reduce the memory and computation cost during inference. However, previous methods seldom deal with complicated structures like residual connections, group/depth-wise convolution and feature pyramid network, where channels of multiple layers are coupled and need to be pruned simultaneously. In this paper, we present a general channel pruning approach that can be applied to various complicated structures. Particularly, we propose a layer grouping algorithm to find coupled channels automatically. Then we derive a unified metric based on Fisher information to evaluate the importance of a single channel and coupled channels. Moreover, we find that inference speedup on GPUs is more correlated with the reduction of memory rather than FLOPs, and thus we employ the memory reduction of each channel to normalize the importance. Our method can be used to prune any structures including those with coupled channels. We conduct extensive experiments on various backbones, including the classic ResNet and ResNeXt, mobile-friendly MobileNetV2, and the NAS-based RegNet, both on image classification and object detection which is under-explored. Experimental results validate that our method can effectively prune sophisticated networks, boosting inference speed without sacrificing accuracy.
Abstract:In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely slender objects. In real-world scenarios as well as widely-used datasets (such as COCO), slender objects are actually very common. However, this type of object has been largely overlooked by previous object detection algorithms. Upon our investigation, for a classical object detection method, a drastic drop of 18.9% mAP on COCO is observed, if solely evaluated on slender objects. Therefore, We systematically study the problem of slender object detection in this work. Accordingly, an analytical framework with carefully designed benchmark and evaluation protocols is established, in which different algorithms and modules can be inspected and compared. Our key findings include: 1) the essential role of anchors in label assignment; 2) the descriptive capability of the 2-point representation; 3) the crucial strategies for improving the detection of slender objects and regular objects. Our work identifies and extends the insights of existing methods that are previously underexploited. Furthermore, we propose a feature adaption strategy that achieves clear and consistent improvements over current representative object detection methods. In particular, a natural and effective extension of the center prior, which leads to a significant improvement on slender objects, is devised. We believe this work opens up new opportunities and calibrates ablation standards for future research in the field of object detection.
Abstract:State-of-the-art deep learning based stereo matching approaches treat disparity estimation as a regression problem, where loss function is directly defined on true disparities and their estimated ones. However, disparity is just a byproduct of a matching process modeled by cost volume, while indirectly learning cost volume driven by disparity regression is prone to overfitting since cost volume is under constrained. In this paper, we propose to directly add constraints to the cost volume by filtering cost volume with unimodal distribution peaked at true disparities. In addition, variances of the unimodal distributions for each pixel are estimated to explicitly model matching uncertainty under different contexts. The proposed architecture achieves state-of-the-art performance on Scene Flow and two KITTI stereo benchmarks. In particular, our method ranked the $1^{st}$ place of KITTI 2012 evaluation and the $4^{th}$ place of KITTI 2015 evaluation (recorded on 2019.8.20).
Abstract:Matching clothing images from customers and online shopping stores has rich applications in E-commerce. Existing algorithms encoded an image as a global feature vector and performed retrieval with the global representation. However, discriminative local information on clothes are submerged in this global representation, resulting in sub-optimal performance. To address this issue, we propose a novel Graph Reasoning Network (GRNet) on a Similarity Pyramid, which learns similarities between a query and a gallery cloth by using both global and local representations in multiple scales. The similarity pyramid is represented by a Graph of similarity, where nodes represent similarities between clothing components at different scales, and the final matching score is obtained by message passing along edges. In GRNet, graph reasoning is solved by training a graph convolutional network, enabling to align salient clothing components to improve clothing retrieval. To facilitate future researches, we introduce a new benchmark FindFashion, containing rich annotations of bounding boxes, views, occlusions, and cropping. Extensive experiments show that GRNet obtains new state-of-the-art results on two challenging benchmarks, e.g., pushing the top-1, top-20, and top-50 accuracies on DeepFashion to 26%, 64%, and 75% (i.e., 4%, 10%, and 10% absolute improvements), outperforming competitors with large margins. On FindFashion, GRNet achieves considerable improvements on all empirical settings.
Abstract:Successful visual recognition networks benefit from aggregating information spanning from a wide range of scales. Previous research has investigated information fusion of connected layers or multiple branches in a block, seeking to strengthen the power of multi-scale representations. Despite their great successes, existing practices often allocate the neurons for each scale manually, and keep the same ratio in all aggregation blocks of an entire network, rendering suboptimal performance. In this paper, we propose to learn the neuron allocation for aggregating multi-scale information in different building blocks of a deep network. The most informative output neurons in each block are preserved while others are discarded, and thus neurons for multiple scales are competitively and adaptively allocated. Our scale aggregation network (ScaleNet) is constructed by repeating a scale aggregation (SA) block that concatenates feature maps at a wide range of scales. Feature maps for each scale are generated by a stack of downsampling, convolution and upsampling operations. The data-driven neuron allocation and SA block achieve strong representational power at the cost of considerably low computational complexity. The proposed ScaleNet, by replacing all 3x3 convolutions in ResNet with our SA blocks, achieves better performance than ResNet and its outstanding variants like ResNeXt and SE-ResNet, in the same computational complexity. On ImageNet classification, ScaleNets absolutely reduce the top-1 error rate of ResNets by 1.12 (101 layers) and 1.82 (50 layers). On COCO object detection, ScaleNets absolutely improve the mmAP with backbone of ResNets by 3.6 (101 layers) and 4.6 (50 layers) on Faster RCNN, respectively. Code and models are released at https://github.com/Eli-YiLi/ScaleNet.
Abstract:Improving model performance is always the key problem in machine learning including deep learning. However, stand-alone neural networks always suffer from marginal effect when stacking more layers. At the same time, ensemble is a useful technique to further enhance model performance. Nevertheless, training several independent stand-alone deep neural networks costs multiple resources. In this work, we propose Intra-Ensemble, an end-to-end strategy with stochastic training operations to train several sub-networks simultaneously within one neural network. Additional parameter size is marginal since the majority of parameters are mutually shared. Meanwhile, stochastic training increases the diversity of sub-networks with weight sharing, which significantly enhances intra-ensemble performance. Extensive experiments prove the applicability of intra-ensemble on various kinds of datasets and network architectures. Our models achieve comparable results with the state-of-the-art architectures on CIFAR-10 and CIFAR-100.