Abstract:General-purpose automatic speech recognition (ASR) systems do not always perform well in goal-oriented dialogue. Existing ASR correction methods rely on prior user data or named entities. We extend correction to tasks that have no prior user data and exhibit linguistic flexibility such as lexical and syntactic variations. We propose a novel context augmentation with a large language model and a ranking strategy that incorporates contextual information from the dialogue states of a goal-oriented conversational AI and its tasks. Our method ranks (1) n-best ASR hypotheses by their lexical and semantic similarity with context and (2) context by phonetic correspondence with ASR hypotheses. Evaluated in home improvement and cooking domains with real-world users, our method improves recall and F1 of correction by 34% and 16%, respectively, while maintaining precision and false positive rate. Users rated .8-1 point (out of 5) higher when our correction method worked properly, with no decrease due to false positives.
Abstract:Ensuring that Large Language Models (LLMs) generate text representative of diverse sub-populations is essential, particularly when key concepts related to under-represented groups are scarce in the training data. We address this challenge with a novel clustering-based active learning framework, enhanced with knowledge distillation. The proposed framework transforms the intermediate outputs of the learner model, enabling effective active learning for generative tasks for the first time. Integration of clustering and knowledge distillation yields more representative models without prior knowledge of underlying data distribution and overbearing human efforts. We validate our approach in practice through case studies in counter-narration and style transfer. We construct two new datasets in tandem with model training, showing a performance improvement of 2%-10% over baseline models. Our results also show more consistent performance across various data subgroups and increased lexical diversity, underscoring our model's resilience to skewness in available data. Further, our results show that the data acquired via our approach improves the performance of secondary models not involved in the learning loop, showcasing practical utility of the framework.
Abstract:Conversation forecasting tasks a model with predicting the outcome of an unfolding conversation. For instance, it can be applied in social media moderation to predict harmful user behaviors before they occur, allowing for preventative interventions. While large language models (LLMs) have recently been proposed as an effective tool for conversation forecasting, it's unclear what biases they may have, especially against forecasting the (potentially harmful) outcomes we request them to predict during moderation. This paper explores to what extent model uncertainty can be used as a tool to mitigate potential biases. Specifically, we ask three primary research questions: 1) how does LLM forecasting accuracy change when we ask models to represent their uncertainty; 2) how does LLM bias change when we ask models to represent their uncertainty; 3) how can we use uncertainty representations to reduce or completely mitigate biases without many training data points. We address these questions for 5 open-source language models tested on 2 datasets designed to evaluate conversation forecasting for social media moderation.
Abstract:We introduce a goal-oriented conversational AI system enhanced with American Sign Language (ASL) instructions, presenting the first implementation of such a system on a worldwide multimodal conversational AI platform. Accessible through a touch-based interface, our system receives input from users and seamlessly generates ASL instructions by leveraging retrieval methods and cognitively based gloss translations. Central to our design is a sign translation module powered by Large Language Models, alongside a token-based video retrieval system for delivering instructional content from recipes and wikiHow guides. Our development process is deeply rooted in a commitment to community engagement, incorporating insights from the Deaf and Hard-of-Hearing community, as well as experts in cognitive and ASL learning sciences. The effectiveness of our signing instructions is validated by user feedback, achieving ratings on par with those of the system in its non-signing variant. Additionally, our system demonstrates exceptional performance in retrieval accuracy and text-generation quality, measured by metrics such as BERTScore. We have made our codebase and datasets publicly accessible at https://github.com/Merterm/signed-dialogue, and a demo of our signed instruction video retrieval system is available at https://huggingface.co/spaces/merterm/signed-instructions.
Abstract:Effective human-machine collaboration requires machine learning models to externalize uncertainty, so users can reflect and intervene when necessary. For language models, these representations of uncertainty may be impacted by sycophancy bias: proclivity to agree with users, even if they are wrong. For instance, models may be over-confident in (incorrect) problem solutions suggested by a user. We study the relationship between sycophancy and uncertainty estimation for the first time. We propose a generalization of the definition of sycophancy bias to measure downstream impacts on uncertainty estimation, and also propose a new algorithm (SyRoUP) to account for sycophancy in the uncertainty estimation process. Unlike previous works on sycophancy, we study a broad array of user behaviors, varying both correctness and confidence of user suggestions to see how model answers (and their certainty) change. Our experiments across conversation forecasting and question-answering tasks show that user confidence plays a critical role in modulating the effects of sycophancy, and that SyRoUP can better predict these effects. From these results, we argue that externalizing both model and user uncertainty can help to mitigate the impacts of sycophancy bias.
Abstract:Ensuring robust safety measures across a wide range of scenarios is crucial for user-facing systems. While Large Language Models (LLMs) can generate valuable data for safety measures, they often exhibit distributional biases, focusing on common scenarios and neglecting rare but critical cases. This can undermine the effectiveness of safety protocols developed using such data. To address this, we propose a novel framework that integrates active learning with clustering to guide LLM generation, enhancing their representativeness and robustness in safety scenarios. We demonstrate the effectiveness of our approach by constructing a dataset of 5.4K potential safety violations through an iterative process involving LLM generation and an active learner model's feedback. Our results show that the proposed framework produces a more representative set of safety scenarios without requiring prior knowledge of the underlying data distribution. Additionally, data acquired through our method improves the accuracy and F1 score of both the active learner model as well models outside the scope of active learning process, highlighting its broad applicability.
Abstract:Effective interlocutors account for the uncertain goals, beliefs, and emotions of others. But even the best human conversationalist cannot perfectly anticipate the trajectory of a dialogue. How well can language models represent inherent uncertainty in conversations? We propose FortUne Dial, an expansion of the long-standing "conversation forecasting" task: instead of just accuracy, evaluation is conducted with uncertainty-aware metrics, effectively enabling abstention on individual instances. We study two ways in which language models potentially represent outcome uncertainty (internally, using scores and directly, using tokens) and propose fine-tuning strategies to improve calibration of both representations. Experiments on eight difficult negotiation corpora demonstrate that our proposed fine-tuning strategies (a traditional supervision strategy and an off-policy reinforcement learning strategy) can calibrate smaller open-source models to compete with pre-trained models 10x their size.
Abstract:The ingrained principles of fairness in a dialogue system's decision-making process and generated responses are crucial for user engagement, satisfaction, and task achievement. Absence of equitable and inclusive principles can hinder the formation of common ground, which in turn negatively impacts the overall performance of the system. For example, misusing pronouns in a user interaction may cause ambiguity about the intended subject. Yet, there is no comprehensive study of equitable text generation in dialogue. Aptly, in this work, we use theories of computational learning to study this problem. We provide formal definitions of equity in text generation, and further, prove formal connections between learning human-likeness and learning equity: algorithms for improving equity ultimately reduce to algorithms for improving human-likeness (on augmented data). With this insight, we also formulate reasonable conditions under which text generation algorithms can learn to generate equitable text without any modifications to the biased training data on which they learn. To exemplify our theory in practice, we look at a group of algorithms for the GuessWhat?! visual dialogue game and, using this example, test our theory empirically. Our theory accurately predicts relative-performance of multiple algorithms in generating equitable text as measured by both human and automated evaluation.
Abstract:While large pre-trained language models (LMs) find greater use across NLP, existing evaluation protocols do not consider how LM language use aligns with particular human demographic groups, which can be an important consideration in conversational AI applications. To remedy this gap, we consider how LM language skills can be measured and compared to human sub-populations. We suggest clinical techniques from Speech Language Pathology, which has well-established norms for acquisition of language skills, organized by (human) age. We conduct evaluation with a domain expert (i.e., a clinically licensed speech language pathologist), and also propose automated techniques to substitute clinical evaluation at scale. We find LM capability varies widely depending on task with GPT-3.5 mimicking the ability of a typical 6-9 year old at tasks requiring inference about word meanings and simultaneously outperforming a typical 21 year old at memorization. GPT-3.5 (InstructGPT) also has trouble with social language use, exhibiting less than 50\% of the tested pragmatic skills. It shows errors in understanding particular word parts-of-speech and associative word relations, among other lexical features. Ultimately, findings reiterate the importance of considering demographic alignment and conversational goals when using these models as public-facing tools. Our framework will be publicly available via code, data, and a python package.
Abstract:Algorithms for text-generation in dialogue can be misguided. For example, in task-oriented settings, reinforcement learning that optimizes only task-success can lead to abysmal lexical diversity. We hypothesize this is due to poor theoretical understanding of the objectives in text-generation and their relation to the learning process (i.e., model training). To this end, we propose a new theoretical framework for learning to generate text in dialogue. Compared to existing theories of learning, our framework allows for analysis of the multi-faceted goals inherent to text-generation. We use our framework to develop theoretical guarantees for learners that adapt to unseen data. As an example, we apply our theory to study data-shift within a cooperative learning algorithm proposed for the GuessWhat?! visual dialogue game. From this insight, we propose a new algorithm, and empirically, we demonstrate our proposal improves both task-success and human-likeness of the generated text. Finally, we show statistics from our theory are empirically predictive of multiple qualities of the generated dialogue, suggesting our theory is useful for model-selection when human evaluations are not available.