University of Pittsburgh
Abstract:Generating free-text rationales is among the emergent capabilities of Large Language Models (LLMs). These rationales have been found to enhance LLM performance across various NLP tasks. Recently, there has been growing interest in using these rationales to provide insights for various important downstream tasks. In this paper, we analyze generated free-text rationales in tasks with subjective answers, emphasizing the importance of rationalization in such scenarios. We focus on pairwise argument ranking, a highly subjective task with significant potential for real-world applications, such as debate assistance. We evaluate the persuasiveness of rationales generated by nine LLMs to support their subjective choices. Our findings suggest that open-source LLMs, particularly Llama2-70B-chat, are capable of providing highly persuasive rationalizations, surpassing even GPT models. Additionally, our experiments show that rationale persuasiveness can be improved by controlling its parameters through prompting or through self-refinement.
Abstract:Automatically assessing classroom discussion quality is becoming increasingly feasible with the help of new NLP advancements such as large language models (LLMs). In this work, we examine how the assessment performance of 2 LLMs interacts with 3 factors that may affect performance: task formulation, context length, and few-shot examples. We also explore the computational efficiency and predictive consistency of the 2 LLMs. Our results suggest that the 3 aforementioned factors do affect the performance of the tested LLMs and there is a relation between consistency and performance. We recommend a LLM-based assessment approach that has a good balance in terms of predictive performance, computational efficiency, and consistency.
Abstract:One of the keys to the success of collaborative learning is balanced participation by all learners, but this does not always happen naturally. Pedagogical robots have the potential to facilitate balance. However, it remains unclear what participation balance robots should aim at; various metrics have been proposed, but it is still an open question whether we should balance human participation in human-human interactions (HHI) or human-robot interactions (HRI) and whether we should consider robots' participation in collaborative learning involving multiple humans and a robot. This paper examines collaborative learning between a pair of students and a teachable robot that acts as a peer tutee to answer the aforementioned question. Through an exploratory study, we hypothesize which balance metrics in the literature and which portions of dialogues (including vs. excluding robots' participation and human participation in HHI vs. HRI) will better predict learning as a group. We test the hypotheses with another study and replicate them with automatically obtained units of participation to simulate the information available to robots when they adaptively fix imbalances in real-time. Finally, we discuss recommendations on which metrics learning science researchers should choose when trying to understand how to facilitate collaboration.
Abstract:Knowledge retrieval is one of the major challenges in building a knowledge-grounded dialogue system. A common method is to use a neural retriever with a distributed approximate nearest-neighbor database to quickly find the relevant knowledge sentences. In this work, we propose an approach that utilizes topic modeling on the knowledge base to further improve retrieval accuracy and as a result, improve response generation. Additionally, we experiment with a large language model, ChatGPT, to take advantage of the improved retrieval performance to further improve the generation results. Experimental results on two datasets show that our approach can increase retrieval and generation performance. The results also indicate that ChatGPT is a better response generator for knowledge-grounded dialogue when relevant knowledge is provided.
Abstract:The ability to interact with machines using natural human language is becoming not just commonplace, but expected. The next step is not just text interfaces, but speech interfaces and not just with computers, but with all machines including robots. In this paper, we chronicle the recent history of this growing field of spoken dialogue with robots and offer the community three proposals, the first focused on education, the second on benchmarks, and the third on the modeling of language when it comes to spoken interaction with robots. The three proposals should act as white papers for any researcher to take and build upon.
Abstract:This paper introduces ReflectSumm, a novel summarization dataset specifically designed for summarizing students' reflective writing. The goal of ReflectSumm is to facilitate developing and evaluating novel summarization techniques tailored to real-world scenarios with little training data, %practical tasks with potential implications in the opinion summarization domain in general and the educational domain in particular. The dataset encompasses a diverse range of summarization tasks and includes comprehensive metadata, enabling the exploration of various research questions and supporting different applications. To showcase its utility, we conducted extensive evaluations using multiple state-of-the-art baselines. The results provide benchmarks for facilitating further research in this area.
Abstract:This paper presents an overview of the ImageArg shared task, the first multimodal Argument Mining shared task co-located with the 10th Workshop on Argument Mining at EMNLP 2023. The shared task comprises two classification subtasks - (1) Subtask-A: Argument Stance Classification; (2) Subtask-B: Image Persuasiveness Classification. The former determines the stance of a tweet containing an image and a piece of text toward a controversial topic (e.g., gun control and abortion). The latter determines whether the image makes the tweet text more persuasive. The shared task received 31 submissions for Subtask-A and 21 submissions for Subtask-B from 9 different teams across 6 countries. The top submission in Subtask-A achieved an F1-score of 0.8647 while the best submission in Subtask-B achieved an F1-score of 0.5561.
Abstract:We propose an approach for the structure controllable summarization of long legal opinions that considers the argument structure of the document. Our approach involves using predicted argument role information to guide the model in generating coherent summaries that follow a provided structure pattern. We demonstrate the effectiveness of our approach on a dataset of legal opinions and show that it outperforms several strong baselines with respect to ROUGE, BERTScore, and structure similarity.
Abstract:We develop models to classify desirable reasoning revisions in argumentative writing. We explore two approaches -- multi-task learning and transfer learning -- to take advantage of auxiliary sources of revision data for similar tasks. Results of intrinsic and extrinsic evaluations show that both approaches can indeed improve classifier performance over baselines. While multi-task learning shows that training on different sources of data at the same time may improve performance, transfer-learning better represents the relationship between the data.
Abstract:Rigorous and interactive class discussions that support students to engage in high-level thinking and reasoning are essential to learning and are a central component of most teaching interventions. However, formally assessing discussion quality 'at scale' is expensive and infeasible for most researchers. In this work, we experimented with various modern natural language processing (NLP) techniques to automatically generate rubric scores for individual dimensions of classroom text discussion quality. Specifically, we worked on a dataset of 90 classroom discussion transcripts consisting of over 18000 turns annotated with fine-grained Analyzing Teaching Moves (ATM) codes and focused on four Instructional Quality Assessment (IQA) rubrics. Despite the limited amount of data, our work shows encouraging results in some of the rubrics while suggesting that there is room for improvement in the others. We also found that certain NLP approaches work better for certain rubrics.