Abstract:Human interactions are deeply rooted in the interplay of thoughts, beliefs, and desires made possible by Theory of Mind (ToM): our cognitive ability to understand the mental states of ourselves and others. Although ToM may come naturally to us, emulating it presents a challenge to even the most advanced Large Language Models (LLMs). Recent improvements to LLMs' reasoning capabilities from simple yet effective prompting techniques such as Chain-of-Thought have seen limited applicability to ToM. In this paper, we turn to the prominent cognitive science theory "Simulation Theory" to bridge this gap. We introduce SimToM, a novel two-stage prompting framework inspired by Simulation Theory's notion of perspective-taking. To implement this idea on current ToM benchmarks, SimToM first filters context based on what the character in question knows before answering a question about their mental state. Our approach, which requires no additional training and minimal prompt-tuning, shows substantial improvement over existing methods, and our analysis reveals the importance of perspective-taking to Theory-of-Mind capabilities. Our findings suggest perspective-taking as a promising direction for future research into improving LLMs' ToM capabilities.
Abstract:In the era of large scale pretrained models, Knowledge Distillation (KD) serves an important role in transferring the wisdom of computationally heavy teacher models to lightweight, efficient student models while preserving performance. Traditional KD paradigms, however, assume readily available access to teacher models for frequent inference -- a notion increasingly at odds with the realities of costly, often proprietary, large scale models. Addressing this gap, our paper considers how to minimize the dependency on teacher model inferences in KD in a setting we term Few Teacher Inference Knowledge Distillation (FTI KD). We observe that prevalent KD techniques and state of the art data augmentation strategies fall short in this constrained setting. Drawing inspiration from educational principles that emphasize learning through comparison, we propose Comparative Knowledge Distillation (CKD), which encourages student models to understand the nuanced differences in a teacher model's interpretations of samples. Critically, CKD provides additional learning signals to the student without making additional teacher calls. We also extend the principle of CKD to groups of samples, enabling even more efficient learning from limited teacher calls. Empirical evaluation across varied experimental settings indicates that CKD consistently outperforms state of the art data augmentation and KD techniques.
Abstract:In many machine learning systems that jointly learn from multiple modalities, a core research question is to understand the nature of multimodal interactions: the emergence of new task-relevant information during learning from both modalities that was not present in either alone. We study this challenge of interaction quantification in a semi-supervised setting with only labeled unimodal data and naturally co-occurring multimodal data (e.g., unlabeled images and captions, video and corresponding audio) but when labeling them is time-consuming. Using a precise information-theoretic definition of interactions, our key contributions are the derivations of lower and upper bounds to quantify the amount of multimodal interactions in this semi-supervised setting. We propose two lower bounds based on the amount of shared information between modalities and the disagreement between separately trained unimodal classifiers, and derive an upper bound through connections to approximate algorithms for min-entropy couplings. We validate these estimated bounds and show how they accurately track true interactions. Finally, two semi-supervised multimodal applications are explored based on these theoretical results: (1) analyzing the relationship between multimodal performance and estimated interactions, and (2) self-supervised learning that embraces disagreement between modalities beyond agreement as is typically done.
Abstract:Self-supervised learning (SSL) and the objective of masking-and-predicting in particular have led to promising SSL performance on a variety of downstream tasks. However, while most approaches randomly mask tokens, there is strong intuition from the field of education that deciding what to mask can substantially improve learning outcomes. We introduce Difference-Masking, an approach that automatically chooses what to mask during continued pretraining by considering what makes an unlabelled target domain different from the pretraining domain. Empirically, we find that Difference-Masking outperforms baselines on continued pretraining settings across four diverse language and multimodal video tasks. The cross-task applicability of Difference-Masking supports the effectiveness of our framework for SSL pretraining in language, vision, and other domains.
Abstract:Creating artificial social intelligence - algorithms that can understand the nuances of multi-person interactions - is an exciting and emerging challenge in processing facial expressions and gestures from multimodal videos. Recent multimodal methods have set the state of the art on many tasks, but have difficulty modeling the complex face-to-face conversational dynamics across speaking turns in social interaction, particularly in a self-supervised setup. In this paper, we propose Face-to-Face Contrastive Learning (F2F-CL), a graph neural network designed to model social interactions using factorization nodes to contextualize the multimodal face-to-face interaction along the boundaries of the speaking turn. With the F2F-CL model, we propose to perform contrastive learning between the factorization nodes of different speaking turns within the same video. We experimentally evaluated the challenging Social-IQ dataset and show state-of-the-art results.
Abstract:Robustness to environmental noise is important to creating automatic speech emotion recognition systems that are deployable in the real world. Prior work on noise robustness has assumed that systems would not make use of sample-by-sample training noise conditions, or that they would have access to unlabelled testing data to generalize across noise conditions. We avoid these assumptions and introduce the resulting task as heterogeneous condition training. We show that with full knowledge of the test noise conditions, we can improve performance by dynamically routing samples to specialized feature encoders for each noise condition, and with partial knowledge, we can use known noise conditions and domain adaptation algorithms to train systems that generalize well to unseen noise conditions. We then extend these improvements to the multimodal setting by dynamically routing samples to maintain temporal ordering, resulting in significant improvements over approaches that do not specialize or generalize based on noise type.