Abstract:Semantic recognition is pivotal in virtual reality (VR) applications, enabling immersive and interactive experiences. A promising approach is utilizing millimeter-wave (mmWave) signals to generate point clouds. However, the high computational and memory demands of current mmWave point cloud models hinder their efficiency and reliability. To address this limitation, our paper introduces ESP-PCT, a novel Enhanced Semantic Performance Point Cloud Transformer with a two-stage semantic recognition framework tailored for VR applications. ESP-PCT takes advantage of the accuracy of sensory point cloud data and optimizes the semantic recognition process, where the localization and focus stages are trained jointly in an end-to-end manner. We evaluate ESP-PCT on various VR semantic recognition conditions, demonstrating substantial enhancements in recognition efficiency. Notably, ESP-PCT achieves a remarkable accuracy of 93.2% while reducing the computational requirements (FLOPs) by 76.9% and memory usage by 78.2% compared to the existing Point Transformer model simultaneously. These underscore ESP-PCT's potential in VR semantic recognition by achieving high accuracy and reducing redundancy. The code and data of this project are available at \url{https://github.com/lymei-SEU/ESP-PCT}.
Abstract:Learning multimodal representations involves integrating information from multiple heterogeneous sources of data. In order to accelerate progress towards understudied modalities and tasks while ensuring real-world robustness, we release MultiZoo, a public toolkit consisting of standardized implementations of > 20 core multimodal algorithms and MultiBench, a large-scale benchmark spanning 15 datasets, 10 modalities, 20 prediction tasks, and 6 research areas. Together, these provide an automated end-to-end machine learning pipeline that simplifies and standardizes data loading, experimental setup, and model evaluation. To enable holistic evaluation, we offer a comprehensive methodology to assess (1) generalization, (2) time and space complexity, and (3) modality robustness. MultiBench paves the way towards a better understanding of the capabilities and limitations of multimodal models, while ensuring ease of use, accessibility, and reproducibility. Our toolkits are publicly available, will be regularly updated, and welcome inputs from the community.
Abstract:Multimodal fusion of multiple heterogeneous and interconnected signals is a fundamental challenge in almost all multimodal problems and applications. In order to perform multimodal fusion, we need to understand the types of interactions that modalities can exhibit: how each modality individually provides information useful for a task and how this information changes in the presence of other modalities. In this paper, we perform a comparative study of how human annotators can be leveraged to annotate two categorizations of multimodal interactions: (1) partial labels, where different randomly assigned annotators annotate the label given the first, second, and both modalities, and (2) counterfactual labels, where the same annotator is tasked to annotate the label given the first modality before giving them the second modality and asking them to explicitly reason about how their answer changes, before proposing an alternative taxonomy based on (3) information decomposition, where annotators annotate the degrees of redundancy: the extent to which modalities individually and together give the same predictions on the task, uniqueness: the extent to which one modality enables a task prediction that the other does not, and synergy: the extent to which only both modalities enable one to make a prediction about the task that one would not otherwise make using either modality individually. Through extensive experiments and annotations, we highlight several opportunities and limitations of each approach and propose a method to automatically convert annotations of partial and counterfactual labels to information decomposition, yielding an accurate and efficient method for quantifying interactions in multimodal datasets.
Abstract:In many machine learning systems that jointly learn from multiple modalities, a core research question is to understand the nature of multimodal interactions: the emergence of new task-relevant information during learning from both modalities that was not present in either alone. We study this challenge of interaction quantification in a semi-supervised setting with only labeled unimodal data and naturally co-occurring multimodal data (e.g., unlabeled images and captions, video and corresponding audio) but when labeling them is time-consuming. Using a precise information-theoretic definition of interactions, our key contributions are the derivations of lower and upper bounds to quantify the amount of multimodal interactions in this semi-supervised setting. We propose two lower bounds based on the amount of shared information between modalities and the disagreement between separately trained unimodal classifiers, and derive an upper bound through connections to approximate algorithms for min-entropy couplings. We validate these estimated bounds and show how they accurately track true interactions. Finally, two semi-supervised multimodal applications are explored based on these theoretical results: (1) analyzing the relationship between multimodal performance and estimated interactions, and (2) self-supervised learning that embraces disagreement between modalities beyond agreement as is typically done.
Abstract:The burgeoning field of camouflaged object detection (COD) seeks to identify objects that blend into their surroundings. Despite the impressive performance of recent models, we have identified a limitation in their robustness, where existing methods may misclassify salient objects as camouflaged ones, despite these two characteristics being contradictory. This limitation may stem from lacking multi-pattern training images, leading to less saliency robustness. To address this issue, we introduce CamDiff, a novel approach inspired by AI-Generated Content (AIGC) that overcomes the scarcity of multi-pattern training images. Specifically, we leverage the latent diffusion model to synthesize salient objects in camouflaged scenes, while using the zero-shot image classification ability of the Contrastive Language-Image Pre-training (CLIP) model to prevent synthesis failures and ensure the synthesized object aligns with the input prompt. Consequently, the synthesized image retains its original camouflage label while incorporating salient objects, yielding camouflage samples with richer characteristics. The results of user studies show that the salient objects in the scenes synthesized by our framework attract the user's attention more; thus, such samples pose a greater challenge to the existing COD models. Our approach enables flexible editing and efficient large-scale dataset generation at a low cost. It significantly enhances COD baselines' training and testing phases, emphasizing robustness across diverse domains. Our newly-generated datasets and source code are available at https://github.com/drlxj/CamDiff.
Abstract:The recent explosion of interest in multimodal applications has resulted in a wide selection of datasets and methods for representing and integrating information from different signals. Despite these empirical advances, there remain fundamental research questions: how can we quantify the nature of interactions that exist among input features? Subsequently, how can we capture these interactions using suitable data-driven methods? To answer this question, we propose an information-theoretic approach to quantify the degree of redundancy, uniqueness, and synergy across input features, which we term the PID statistics of a multimodal distribution. Using 2 newly proposed estimators that scale to high-dimensional distributions, we demonstrate their usefulness in quantifying the interactions within multimodal datasets, the nature of interactions captured by multimodal models, and principled approaches for model selection. We conduct extensive experiments on both synthetic datasets where the PID statistics are known and on large-scale multimodal benchmarks where PID estimation was previously impossible. Finally, to demonstrate the real-world applicability of our approach, we present three case studies in pathology, mood prediction, and robotic perception where our framework accurately recommends strong multimodal models for each application.
Abstract:Air quality prediction is a typical spatio-temporal modeling problem, which always uses different components to handle spatial and temporal dependencies in complex systems separately. Previous models based on time series analysis and Recurrent Neural Network (RNN) methods have only modeled time series while ignoring spatial information. Previous GCNs-based methods usually require providing spatial correlation graph structure of observation sites in advance. The correlations among these sites and their strengths are usually calculated using prior information. However, due to the limitations of human cognition, limited prior information cannot reflect the real station-related structure or bring more effective information for accurate prediction. To this end, we propose a novel Dynamic Graph Neural Network with Adaptive Edge Attributes (DGN-AEA) on the message passing network, which generates the adaptive bidirected dynamic graph by learning the edge attributes as model parameters. Unlike prior information to establish edges, our method can obtain adaptive edge information through end-to-end training without any prior information. Thus reduced the complexity of the problem. Besides, the hidden structural information between the stations can be obtained as model by-products, which can help make some subsequent decision-making analyses. Experimental results show that our model received state-of-the-art performance than other baselines.
Abstract:Learning multimodal representations involves integrating information from multiple heterogeneous sources of data. It is a challenging yet crucial area with numerous real-world applications in multimedia, affective computing, robotics, finance, human-computer interaction, and healthcare. Unfortunately, multimodal research has seen limited resources to study (1) generalization across domains and modalities, (2) complexity during training and inference, and (3) robustness to noisy and missing modalities. In order to accelerate progress towards understudied modalities and tasks while ensuring real-world robustness, we release MultiBench, a systematic and unified large-scale benchmark spanning 15 datasets, 10 modalities, 20 prediction tasks, and 6 research areas. MultiBench provides an automated end-to-end machine learning pipeline that simplifies and standardizes data loading, experimental setup, and model evaluation. To enable holistic evaluation, MultiBench offers a comprehensive methodology to assess (1) generalization, (2) time and space complexity, and (3) modality robustness. MultiBench introduces impactful challenges for future research, including scalability to large-scale multimodal datasets and robustness to realistic imperfections. To accompany this benchmark, we also provide a standardized implementation of 20 core approaches in multimodal learning. Simply applying methods proposed in different research areas can improve the state-of-the-art performance on 9/15 datasets. Therefore, MultiBench presents a milestone in unifying disjoint efforts in multimodal research and paves the way towards a better understanding of the capabilities and limitations of multimodal models, all the while ensuring ease of use, accessibility, and reproducibility. MultiBench, our standardized code, and leaderboards are publicly available, will be regularly updated, and welcomes inputs from the community.
Abstract:The COVID-19 related lockdown measures offer a unique opportunity to understand how changes in economic activity and traffic affect ambient air quality and how much pollution reduction potential can the society offer through digitalization and mobilitylimiting policies. In this work, we estimate pollution reduction over the lockdown period by using the measurements from ground air pollution monitoring stations, training a long-term prediction model and comparing its predictions to measured values over the lockdown month.We show that our models achieve state-of-the-art performance on the data from air pollution measurement stations in Switzerland and in China: evaluate up to -15.8% / +34.4% change in NO2 / PM10 in Zurich; -35.3 % / -3.5 % and -42.4 % / -34.7 % in NO2 / PM2.5 in Beijing and Wuhan respectively. Our reduction estimates are consistent with recent publications, yet in contrast to prior works, our method takes local weather into account. What can we learn from pollution emissions during lockdown? The lockdown period was too short to train meaningful models from scratch. To tackle this problem, we use transfer learning to newly fit only traffic-dependent variables. We show that the resulting models are accurate, suitable for an analysis of the post-lockdown period and capable of estimating the future air pollution reduction potential.
Abstract:We investigate the compression of deep neural networks by quantizing their weights and activations into multiple binary bases, known as multi-bit networks (MBNs), which accelerates the inference and reduces the storage for deployment on low-resource mobile and embedded platforms. We propose Adaptive Loss-aware Quantization (ALQ), a new MBN quantization pipeline that is able to achieve an average bitwidth below one bit without notable loss in inference accuracy. Unlike previous MBN quantization solutions that train a quantizer by minimizing the error to reconstruct full precision weights, ALQ directly minimizes the quantization-induced error on the loss function involving neither gradient approximation nor full precision calculations. ALQ also exploits strategies including adaptive bitwidth, smooth bitwidth reduction, and iterative trained quantization to allow a smaller network size without loss in accuracy. Experiment results on popular image datasets show that ALQ outperforms state-of-the-art compressed networks in terms of both storage and accuracy.