Abstract:Multi-Head Attention (MHA) is a key component of Transformer. In MHA, attention heads work independently, causing problems such as low-rank bottleneck of attention score matrices and head redundancy. We propose Dynamically Composable Multi-Head Attention (DCMHA), a parameter and computation efficient attention architecture that tackles the shortcomings of MHA and increases the expressive power of the model by dynamically composing attention heads. At the core of DCMHA is a $\it{Compose}$ function that transforms the attention score and weight matrices in an input-dependent way. DCMHA can be used as a drop-in replacement of MHA in any transformer architecture to obtain the corresponding DCFormer. DCFormer significantly outperforms Transformer on different architectures and model scales in language modeling, matching the performance of models with ~1.7x-2.0x compute. For example, DCPythia-6.9B outperforms open source Pythia-12B on both pretraining perplexity and downstream task evaluation. The code and models are available at https://github.com/Caiyun-AI/DCFormer.
Abstract:Knowledge graph embedding (KGE) models learn the representation of entities and relations in knowledge graphs. Distance-based methods show promising performance on link prediction task, which predicts the result by the distance between two entity representations. However, most of these methods represent the head entity and tail entity separately, which limits the model capacity. We propose a novel distance-based method named InterHT that allows the head and tail entities to interact better and get better entity representation. Experimental results show that our proposed method achieves the best results on ogbl-wikikg2 dataset.
Abstract:When predicting PM2.5 concentrations, it is necessary to consider complex information sources since the concentrations are influenced by various factors within a long period. In this paper, we identify a set of critical domain knowledge for PM2.5 forecasting and develop a novel graph based model, PM2.5-GNN, being capable of capturing long-term dependencies. On a real-world dataset, we validate the effectiveness of the proposed model and examine its abilities of capturing both fine-grained and long-term influences in PM2.5 process. The proposed PM2.5-GNN has also been deployed online to provide free forecasting service.