ColorfulClouds Technology Co., Ltd
Abstract:This study introduces a cutting-edge regional weather forecasting model based on the SwinTransformer 3D architecture. This model is specifically designed to deliver precise hourly weather predictions ranging from 1 hour to 5 days, significantly improving the reliability and practicality of short-term weather forecasts. Our model has demonstrated generally superior performance when compared to Pangu, a well-established global model. The evaluation indicates that our model excels in predicting most weather variables, highlighting its potential as a more effective alternative in the field of limited area modeling. A noteworthy feature of this model is the integration of enhanced boundary conditions, inspired by traditional numerical weather prediction (NWP) techniques. This integration has substantially improved the model's predictive accuracy. Additionally, the model includes an innovative approach for diagnosing hourly total precipitation at a high spatial resolution of approximately 5 kilometers. This is achieved through a latent diffusion model, offering an alternative method for generating high-resolution precipitation data.
Abstract:High-resolution precipitation forecasts are crucial for providing accurate weather prediction and supporting effective responses to extreme weather events. Traditional numerical models struggle with stochastic subgrid-scale processes, while recent deep learning models often produce blurry results. To address these challenges, we propose a physics-inspired deep learning framework for high-resolution (0.05\textdegree{} $\times$ 0.05\textdegree{}) ensemble precipitation forecasting. Trained on ERA5 and CMPA high-resolution precipitation datasets, the framework integrates deterministic and probabilistic components. The deterministic model, based on a 3D SwinTransformer, captures average precipitation at mesoscale resolution and incorporates strategies to enhance performance, particularly for moderate to heavy rainfall. The probabilistic model employs conditional diffusion in latent space to account for uncertainties in residual precipitation at convective scales. During inference, ensemble members are generated by repeatedly sampling latent variables, enabling the model to represent precipitation uncertainty. Our model significantly enhances spatial resolution and forecast accuracy. Rank histogram shows that the ensemble system is reliable and unbiased. In a case study of heavy precipitation in southern China, the model outputs align more closely with observed precipitation distributions than ERA5, demonstrating superior capability in capturing extreme precipitation events. Additionally, 5-day real-time forecasts show good performance in terms of CSI scores.