Abstract:AI companions based on large language models can role-play and converse very naturally. When value conflicts arise between the AI companion and the user, it may offend or upset the user. Yet, little research has examined such conflicts. We first conducted a formative study that analyzed 151 user complaints about conflicts with AI companions, providing design implications for our study. Based on these, we created Minion, a technology probe to help users resolve human-AI value conflicts. Minion applies a user-empowerment intervention method that provides suggestions by combining expert-driven and user-driven conflict resolution strategies. We conducted a technology probe study, creating 40 value conflict scenarios on Character.AI and Talkie. 22 participants completed 274 tasks and successfully resolved conflicts 94.16% of the time. We summarize user responses, preferences, and needs in resolving value conflicts, and propose design implications to reduce conflicts and empower users to resolve them more effectively.
Abstract:Automatic segmentation of the bronchial tree from CT imaging is important, as it provides structural information for disease diagnosis. Despite the merits of previous automatic bronchus segmentation methods, they have paied less attention to the issue we term as \textit{Intensity Confusion}, wherein the intensity values of certain background voxels approach those of the foreground voxels within bronchi. Conversely, the intensity values of some foreground voxels are nearly identical to those of background voxels. This proximity in intensity values introduces significant challenges to neural network methodologies. To address the issue, we introduce a novel Intensity-Distance Guided loss function, which assigns adaptive weights to different image voxels for mining hard samples that cause the intensity confusion. The proposed loss estimates the voxel-level hardness of samples, on the basis of the following intensity and distance priors. We regard a voxel as a hard sample if it is in: (1) the background and has an intensity value close to the bronchus region; (2) the bronchus region and is of higher intensity than most voxels inside the bronchus; (3) the background region and at a short distance from the bronchus. Extensive experiments not only show the superiority of our method compared with the state-of-the-art methods, but also verify that tackling the intensity confusion issue helps to significantly improve bronchus segmentation. Project page: https://github.com/lhaof/ICM.
Abstract:In this paper, we investigate a multiple-input multiple-output (MIMO) integrated sensing and communication (ISAC) system under typical block-fading channels. As a non-trivial extension to most existing works on ISAC, both the training and transmission signals sent by the ISAC transmitter are exploited for sensing. Specifically, we develop two training and transmission design schemes to minimize a weighted sum of the mean-squared errors (MSEs) of data transmission and radar target response matrix (TRM) estimation. For the former, we first optimize the training signal for simultaneous communication channel and radar TRM estimation. Then, based on the estimated instantaneous channel state information (CSI), we propose an efficient majorization-minimization (MM)-based robust ISAC transmission design, where a semi-closed form solution is obtained in each iteration. For the second scheme, the ISAC transmitter is assumed to have statistical CSI only for reducing the feedback overhead. With CSI statistics available, we integrate the training and transmission design into one single problem and propose an MM-based alternating algorithm to find a high-quality solution. In addition, we provide alternative structured and low-complexity solutions for both schemes under certain special cases. Finally, simulation results demonstrate that the radar performance is significantly improved compared to the existing scheme that integrates sensing into the transmission stage only. Moreover, it is verified that the investigated two schemes have advantages in terms of communication and sensing performances, respectively.
Abstract:Mental illness remains one of the most critical public health issues, with a significant gap between the available mental health support and patient needs. Many mental health professionals highlight a disconnect between their training and real-world patient interactions, leaving some trainees feeling unprepared and potentially affecting their early career success. In this paper, we propose PATIENT-{\Psi}, a novel patient simulation framework for cognitive behavior therapy (CBT) training. To build PATIENT-{\Psi}, we constructed diverse patient profiles and their corresponding cognitive models based on CBT principles, and then used large language models (LLMs) programmed with the patient cognitive models to act as a simulated therapy patient. We propose an interactive training scheme, PATIENT-{\Psi}-TRAINER, for mental health trainees to practice a key skill in CBT -- formulating the cognitive model of the patient -- through role-playing a therapy session with PATIENT-{\Psi}. To evaluate PATIENT-{\Psi}, we conducted a user study of 4 mental health trainees and 10 experts. The results demonstrate that practice using PATIENT-{\Psi}-TRAINER greatly enhances the perceived skill acquisition and confidence of the trainees beyond existing forms of training such as textbooks, videos, and role-play with non-patients. Based on the experts' perceptions, PATIENT-{\Psi} is perceived to be closer to real patient interactions than GPT-4, and PATIENT-{\Psi}-TRAINER holds strong promise to improve trainee competencies. Our pioneering patient simulation training framework, using LLMs, holds great potential to enhance and advance mental health training, ultimately leading to improved patient care and outcomes. We will release all our data, code, and the training platform.
Abstract:The receiver design for multi-input multi-output (MIMO) ultra-reliable and low-latency communication (URLLC) systems can be a tough task due to the use of short channel codes and few pilot symbols. Consequently, error propagation can occur in traditional turbo receivers, leading to performance degradation. Moreover, the processing delay induced by information exchange between different modules may also be undesirable for URLLC. To address the issues, we advocate to perform joint channel estimation, detection, and decoding (JCDD) for MIMO URLLC systems encoded by short low-density parity-check (LDPC) codes. Specifically, we develop two novel JCDD problem formulations based on the maximum a posteriori (MAP) criterion for Gaussian MIMO channels and sparse mmWave MIMO channels, respectively, which integrate the pilots, the bit-to-symbol mapping, the LDPC code constraints, as well as the channel statistical information. Both the challenging large-scale non-convex problems are then solved based on the alternating direction method of multipliers (ADMM) algorithms, where closed-form solutions are achieved in each ADMM iteration. Furthermore, two JCDD neural networks, called JCDDNet-G and JCDDNet-S, are built by unfolding the derived ADMM algorithms and introducing trainable parameters. It is interesting to find via simulations that the proposed trainable JCDD receivers can outperform the turbo receivers with affordable computational complexities.
Abstract:Biomarker detection is an indispensable part in the diagnosis and treatment of low-grade glioma (LGG). However, current LGG biomarker detection methods rely on expensive and complex molecular genetic testing, for which professionals are required to analyze the results, and intra-rater variability is often reported. To overcome these challenges, we propose an interpretable deep learning pipeline, a Multi-Biomarker Histomorphology Discoverer (Multi-Beholder) model based on the multiple instance learning (MIL) framework, to predict the status of five biomarkers in LGG using only hematoxylin and eosin-stained whole slide images and slide-level biomarker status labels. Specifically, by incorporating the one-class classification into the MIL framework, accurate instance pseudo-labeling is realized for instance-level supervision, which greatly complements the slide-level labels and improves the biomarker prediction performance. Multi-Beholder demonstrates superior prediction performance and generalizability for five LGG biomarkers (AUROC=0.6469-0.9735) in two cohorts (n=607) with diverse races and scanning protocols. Moreover, the excellent interpretability of Multi-Beholder allows for discovering the quantitative and qualitative correlations between biomarker status and histomorphology characteristics. Our pipeline not only provides a novel approach for biomarker prediction, enhancing the applicability of molecular treatments for LGG patients but also facilitates the discovery of new mechanisms in molecular functionality and LGG progression.
Abstract:In this paper, we investigate the design of statistically robust detectors for multi-input multi-output (MIMO) systems subject to imperfect channel state information (CSI). A robust maximum likelihood (ML) detection problem is formulated by taking into consideration the CSI uncertainties caused by both the channel estimation error and the channel variation. To address the challenging discrete optimization problem, we propose an efficient alternating direction method of multipliers (ADMM)-based algorithm, which only requires calculating closed-form solutions in each iteration. Furthermore, a robust detection network RADMMNet is constructed by unfolding the ADMM iterations and employing both model-driven and data-driven philosophies. Moreover, in order to relieve the computational burden, a low-complexity ADMM-based robust detector is developed using the Gaussian approximation, and the corresponding deep unfolding network LCRADMMNet is further established. On the other hand, we also provide a novel robust data-aided Kalman filter (RDAKF)-based channel tracking method, which can effectively refine the CSI accuracy and improve the performance of the proposed robust detectors. Simulation results validate the significant performance advantages of the proposed robust detection networks over the non-robust detectors with different CSI acquisition methods.
Abstract:Recent years have seen growing adoption of AI-based decision-support systems (ADS) in homeless services, yet we know little about stakeholder desires and concerns surrounding their use. In this work, we aim to understand impacted stakeholders' perspectives on a deployed ADS that prioritizes scarce housing resources. We employed AI lifecycle comicboarding, an adapted version of the comicboarding method, to elicit stakeholder feedback and design ideas across various components of an AI system's design. We elicited feedback from county workers who operate the ADS daily, service providers whose work is directly impacted by the ADS, and unhoused individuals in the region. Our participants shared concerns and design suggestions around the AI system's overall objective, specific model design choices, dataset selection, and use in deployment. Our findings demonstrate that stakeholders, even without AI knowledge, can provide specific and critical feedback on an AI system's design and deployment, if empowered to do so.
Abstract:Beamforming design has been widely investigated for integrated sensing and communication (ISAC) systems with full-duplex (FD) sensing and half-duplex (HD) communication. To achieve higher spectral efficiency, in this paper, we extend existing ISAC beamforming design by considering the FD capability for both radar and communication. Specifically, we consider an ISAC system, where the base station (BS) performs target detection and communicates with multiple downlink users and uplink users reusing the same time and frequency resources. We jointly optimize the downlink dual-functional transmit signal and the uplink receive beamformers at the BS and the transmit power at the uplink users. The problem is formulated to minimize the total transmit power of the system while guaranteeing the communication and sensing requirements. The downlink and uplink transmissions are tightly coupled, making the joint optimization challenging. To handle this issue, we first determine the receive beamformers in closed forms with respect to the BS transmit beamforming and the user transmit power and then suggest an iterative solution to the remaining problem. We demonstrate via numerical results that the optimized FD communication-based ISAC leads to power efficiency improvement compared to conventional ISAC with HD communication.
Abstract:The vehicular-to-everything (V2X) technology has recently drawn a number of attentions from both academic and industrial areas. However, the openness of the wireless communication system makes it more vulnerable to identity impersonation and information tampering. How to employ the powerful radio frequency fingerprint (RFF) identification technology in V2X systems turns out to be a vital and also challenging task. In this paper, we propose a novel RFF extraction method for Long Term Evolution-V2X (LTE-V2X) systems. In order to conquer the difficulty of extracting transmitter RFF in the presence of wireless channel and receiver noise, we first estimate the wireless channel which excludes the RFF. Then, we remove the impact of the wireless channel based on the channel estimate and obtain initial RFF features. Finally, we conduct RFF denoising to enhance the quality of the initial RFF. Simulation and experiment results both demonstrate that our proposed RFF extraction scheme achieves a high identification accuracy. Furthermore, the performance is also robust to the vehicle speed.