Abstract:In open-ended generative tasks like narrative writing or dialogue, large language models often exhibit cultural biases, showing limited knowledge and generating templated outputs for less prevalent cultures. Recent works show that these biases may stem from uneven cultural representation in pretraining corpora. This work investigates how pretraining leads to biased culture-conditioned generations by analyzing how models associate entities with cultures based on pretraining data patterns. We propose the MEMOed framework (MEMOrization from pretraining document) to determine whether a generation for a culture arises from memorization. Using MEMOed on culture-conditioned generations about food and clothing for 110 cultures, we find that high-frequency cultures in pretraining data yield more generations with memorized symbols, while some low-frequency cultures produce none. Additionally, the model favors generating entities with extraordinarily high frequency regardless of the conditioned culture, reflecting biases toward frequent pretraining terms irrespective of relevance. We hope that the MEMOed framework and our insights will inspire more works on attributing model performance on pretraining data.
Abstract:Sound decision-making relies on accurate prediction for tangible outcomes ranging from military conflict to disease outbreaks. To improve crowdsourced forecasting accuracy, we developed SAGE, a hybrid forecasting system that combines human and machine generated forecasts. The system provides a platform where users can interact with machine models and thus anchor their judgments on an objective benchmark. The system also aggregates human and machine forecasts weighting both for propinquity and based on assessed skill while adjusting for overconfidence. We present results from the Hybrid Forecasting Competition (HFC) - larger than comparable forecasting tournaments - including 1085 users forecasting 398 real-world forecasting problems over eight months. Our main result is that the hybrid system generated more accurate forecasts compared to a human-only baseline which had no machine generated predictions. We found that skilled forecasters who had access to machine-generated forecasts outperformed those who only viewed historical data. We also demonstrated the inclusion of machine-generated forecasts in our aggregation algorithms improved performance, both in terms of accuracy and scalability. This suggests that hybrid forecasting systems, which potentially require fewer human resources, can be a viable approach for maintaining a competitive level of accuracy over a larger number of forecasting questions.
Abstract:We examine diverging preferences in human-labeled preference datasets. We develop a taxonomy of disagreement sources spanning 10 categories across four high-level classes -- task underspecification, response style, refusals, and annotation errors. We find that the majority of disagreements are in opposition with standard reward modeling approaches, which are designed with the assumption that annotator disagreement is noise. We then explore how these findings impact two areas of LLM development: reward modeling and evaluation. In our experiments, we demonstrate how standard reward modeling methods, like the Bradley-Terry model, fail to differentiate whether a given preference judgment is the result of unanimous agreement among annotators or the majority opinion among diverging user preferences. We also find that these tendencies are also echoed by popular LLM-as-Judge evaluation methods, which consistently identify a winning response in cases of diverging preferences. These findings highlight remaining challenges in LLM evaluations, which are greatly influenced by divisive features like response style, and in developing pluralistically aligned LLMs. To address these issues, we develop methods for identifying diverging preferences to mitigate their influence on evaluation and training.
Abstract:The increasing availability of real-world conversation data offers exciting opportunities for researchers to study user-chatbot interactions. However, the sheer volume of this data makes manually examining individual conversations impractical. To overcome this challenge, we introduce WildVis, an interactive tool that enables fast, versatile, and large-scale conversation analysis. WildVis provides search and visualization capabilities in the text and embedding spaces based on a list of criteria. To manage million-scale datasets, we implemented optimizations including search index construction, embedding precomputation and compression, and caching to ensure responsive user interactions within seconds. We demonstrate WildVis's utility through three case studies: facilitating chatbot misuse research, visualizing and comparing topic distributions across datasets, and characterizing user-specific conversation patterns. WildVis is open-source and designed to be extendable, supporting additional datasets and customized search and visualization functionalities.
Abstract:Backdoor attacks, in which a model behaves maliciously when given an attacker-specified trigger, pose a major security risk for practitioners who depend on publicly released language models. Backdoor detection methods aim to detect whether a released model contains a backdoor, so that practitioners can avoid such vulnerabilities. While existing backdoor detection methods have high accuracy in detecting backdoored models on standard benchmarks, it is unclear whether they can robustly identify backdoors in the wild. In this paper, we examine the robustness of backdoor detectors by manipulating different factors during backdoor planting. We find that the success of existing methods highly depends on how intensely the model is trained on poisoned data during backdoor planting. Specifically, backdoors planted with either more aggressive or more conservative training are significantly more difficult to detect than the default ones. Our results highlight a lack of robustness of existing backdoor detectors and the limitations in current benchmark construction.
Abstract:Large Language Models (LLMs) have shown remarkable reasoning performance but struggle with multi-step deductive reasoning involving a series of rule application steps, especially when rules are presented non-sequentially. Our preliminary analysis shows that while LLMs excel in single-step rule application, their performance drops significantly in multi-step scenarios due to the challenge in rule grounding. It requires anchoring the applicable rule and supporting facts at each step, amidst multiple input rules, facts, and inferred facts. To address this, we propose augmenting LLMs with external working memory and introduce a neurosymbolic framework for rule application. The memory stores facts and rules in both natural language and symbolic forms, enabling precise tracking. Utilizing this memory, our framework iteratively performs symbolic rule grounding and LLM-based rule implementation. The former matches predicates and variables of symbolic rules and facts to ground applicable rules at each step. Experiments indicate our framework's effectiveness in rule application and its robustness across various steps and settings~\footnote{Code and data are available at \url{https://github.com/SiyuanWangw/RuleApplication}.}.
Abstract:We introduce Lifelong ICL, a problem setting that challenges long-context language models (LMs) to learn from a sequence of language tasks through in-context learning (ICL). We further introduce Task Haystack, an evaluation suite dedicated to assessing and diagnosing how long-context LMs utilizes contexts in Lifelong ICL. When given a task instruction and test inputs, long-context LMs are expected to leverage the relevant demonstrations in the Lifelong ICL prompt, avoid distraction and interference from other tasks, and achieve test accuracies that are not significantly worse than the Single-task ICL baseline. Task Haystack draws inspiration from the widely-adopted "needle-in-a-haystack" (NIAH) evaluation, but presents new and unique challenges. It demands that models (1) utilize the contexts with deeper understanding, rather than resorting to simple copying and pasting; (2) navigate through long streams of evolving topics and tasks, which closely approximates the complexities of real-world usage of long-context LMs. Additionally, Task Haystack inherits the controllability aspect of NIAH, providing model developers with tools and visualizations to identify model vulnerabilities effectively. We benchmark 12 long-context LMs using Task Haystack. We find that state-of-the-art closed models such as GPT-4o still struggle in this setting, failing 15% of the cases on average, while all open-weight models we evaluate further lack behind by a large margin, failing up to 61% of the cases. In our controlled analysis, we identify factors such as distraction and recency bias as contributors to these failure cases. Further, we observe declines in performance when task instructions are paraphrased at test time or when ICL demonstrations are repeated excessively, raising concerns about the robustness, instruction understanding, and true context utilization of current long-context LMs.
Abstract:The reconfiguration of human-LM interactions from simple sentence completions to complex, multi-domain, humanlike engagements necessitates new methodologies to understand how humans choose to rely on LMs. In our work, we contend that reliance is influenced by numerous factors within the interactional context of a generation, a departure from prior work that used verbalized confidence (e.g., "I'm certain the answer is...") as the key determinant of reliance. Here, we introduce Rel-A.I., an in situ, system-level evaluation approach to measure human reliance on LM-generated epistemic markers (e.g., "I think it's..", "Undoubtedly it's..."). Using this methodology, we measure reliance rates in three emergent human-LM interaction settings: long-term interactions, anthropomorphic generations, and variable subject matter. Our findings reveal that reliance is not solely based on verbalized confidence but is significantly affected by other features of the interaction context. Prior interactions, anthropomorphic cues, and subject domain all contribute to reliance variability. An expression such as, "I'm pretty sure it's...", can vary up to 20% in reliance frequency depending on its interactional context. Our work underscores the importance of context in understanding human reliance and offers future designers and researchers with a methodology to conduct such measurements.
Abstract:Authorship Verification (AV) (do two documents have the same author?) is essential for many sensitive real-life applications. AV is often used in proprietary domains that require a private, offline model, making SOTA online models like ChatGPT undesirable. Other SOTA systems use methods, e.g. Siamese Networks, that are uninterpretable, and hence cannot be trusted in high-stakes applications. In this work, we take the first step to address the above challenges with our model CAVE (Controllable Authorship Verification Explanations): CAVE generates free-text AV explanations that are controlled to be 1) structured (can be decomposed into sub-explanations with respect to relevant linguistic features), and 2) easily verified for explanation-label consistency (via intermediate labels in sub-explanations). In this work, we train a Llama-3-8B as CAVE; since there are no human-written corpora for AV explanations, we sample silver-standard explanations from GPT-4-TURBO and distill them into a pretrained Llama-3-8B. Results on three difficult AV datasets IMdB2, Blog-Auth, and FanFiction show that CAVE generates high quality explanations (as measured by automatic and human evaluation) as well as competitive task accuracies.
Abstract:Language models (LMs) are known to suffer from forgetting of previously learned examples when fine-tuned, breaking stability of deployed LM systems. Despite efforts on mitigating forgetting, few have investigated whether, and how forgotten upstream examples are associated with newly learned tasks. Insights on such associations enable efficient and targeted mitigation of forgetting. In this paper, we empirically analyze forgetting that occurs in $N$ upstream examples while the model learns $M$ new tasks and visualize their associations with a $M \times N$ matrix. We empirically demonstrate that the degree of forgetting can often be approximated by simple multiplicative contributions of the upstream examples and newly learned tasks. We also reveal more complicated patterns where specific subsets of examples are forgotten with statistics and visualization. Following our analysis, we predict forgetting that happens on upstream examples when learning a new task with matrix completion over the empirical associations, outperforming prior approaches that rely on trainable LMs. Project website: https://inklab.usc.edu/lm-forgetting-prediction/