Abstract:Sound decision-making relies on accurate prediction for tangible outcomes ranging from military conflict to disease outbreaks. To improve crowdsourced forecasting accuracy, we developed SAGE, a hybrid forecasting system that combines human and machine generated forecasts. The system provides a platform where users can interact with machine models and thus anchor their judgments on an objective benchmark. The system also aggregates human and machine forecasts weighting both for propinquity and based on assessed skill while adjusting for overconfidence. We present results from the Hybrid Forecasting Competition (HFC) - larger than comparable forecasting tournaments - including 1085 users forecasting 398 real-world forecasting problems over eight months. Our main result is that the hybrid system generated more accurate forecasts compared to a human-only baseline which had no machine generated predictions. We found that skilled forecasters who had access to machine-generated forecasts outperformed those who only viewed historical data. We also demonstrated the inclusion of machine-generated forecasts in our aggregation algorithms improved performance, both in terms of accuracy and scalability. This suggests that hybrid forecasting systems, which potentially require fewer human resources, can be a viable approach for maintaining a competitive level of accuracy over a larger number of forecasting questions.
Abstract:Event data, or structured records of ``who did what to whom'' that are automatically extracted from text, is an important source of data for scholars of international politics. The high cost of developing new event datasets, especially using automated systems that rely on hand-built dictionaries, means that most researchers draw on large, pre-existing datasets such as ICEWS rather than developing tailor-made event datasets optimized for their specific research question. This paper describes a ``bag of tricks'' for efficient, custom event data production, drawing on recent advances in natural language processing (NLP) that allow researchers to rapidly produce customized event datasets. The paper introduces techniques for training an event category classifier with active learning, identifying actors and the recipients of actions in text using large language models and standard machine learning classifiers and pretrained ``question-answering'' models from NLP, and resolving mentions of actors to their Wikipedia article to categorize them. We describe how these techniques produced the new POLECAT global event dataset that is intended to replace ICEWS, along with examples of how scholars can quickly produce smaller, custom event datasets. We publish example code and models to implement our new techniques.