Abstract:In the dynamic realm of social media, diverse topics are discussed daily, transcending linguistic boundaries. However, the complexities of understanding and categorising this content across various languages remain an important challenge with traditional techniques like topic modelling often struggling to accommodate this multilingual diversity. In this paper, we introduce X-Topic, a multilingual dataset featuring content in four distinct languages (English, Spanish, Japanese, and Greek), crafted for the purpose of tweet topic classification. Our dataset includes a wide range of topics, tailored for social media content, making it a valuable resource for scientists and professionals working on cross-linguistic analysis, the development of robust multilingual models, and computational scientists studying online dialogue. Finally, we leverage X-Topic to perform a comprehensive cross-linguistic and multilingual analysis, and compare the capabilities of current general- and domain-specific language models.
Abstract:Content moderators play a key role in keeping the conversation on social media healthy. While the high volume of content they need to judge represents a bottleneck to the moderation pipeline, no studies have explored how models could support them to make faster decisions. There is, by now, a vast body of research into detecting hate speech, sometimes explicitly motivated by a desire to help improve content moderation, but published research using real content moderators is scarce. In this work we investigate the effect of explanations on the speed of real-world moderators. Our experiments show that while generic explanations do not affect their speed and are often ignored, structured explanations lower moderators' decision making time by 7.4%.
Abstract:User embeddings play a crucial role in user engagement forecasting and personalized services. Recent advances in sequence modeling have sparked interest in learning user embeddings from behavioral data. Yet behavior-based user embedding learning faces the unique challenge of dynamic user modeling. As users continuously interact with the apps, user embeddings should be periodically updated to account for users' recent and long-term behavior patterns. Existing methods highly rely on stateless sequence models that lack memory of historical behavior. They have to either discard historical data and use only the most recent data or reprocess the old and new data jointly. Both cases incur substantial computational overhead. To address this limitation, we introduce User Stateful Embedding (USE). USE generates user embeddings and reflects users' evolving behaviors without the need for exhaustive reprocessing by storing previous model states and revisiting them in the future. Furthermore, we introduce a novel training objective named future W-behavior prediction to transcend the limitations of next-token prediction by forecasting a broader horizon of upcoming user behaviors. By combining it with the Same User Prediction, a contrastive learning-based objective that predicts whether different segments of behavior sequences belong to the same user, we further improve the embeddings' distinctiveness and representativeness. We conducted experiments on 8 downstream tasks using Snapchat users' behavioral logs in both static (i.e., fixed user behavior sequences) and dynamic (i.e., periodically updated user behavior sequences) settings. We demonstrate USE's superior performance over established baselines. The results underscore USE's effectiveness and efficiency in integrating historical and recent user behavior sequences into user embeddings in dynamic user modeling.
Abstract:Existing works on long-term open-domain dialogues focus on evaluating model responses within contexts spanning no more than five chat sessions. Despite advancements in long-context large language models (LLMs) and retrieval augmented generation (RAG) techniques, their efficacy in very long-term dialogues remains unexplored. To address this research gap, we introduce a machine-human pipeline to generate high-quality, very long-term dialogues by leveraging LLM-based agent architectures and grounding their dialogues on personas and temporal event graphs. Moreover, we equip each agent with the capability of sharing and reacting to images. The generated conversations are verified and edited by human annotators for long-range consistency and grounding to the event graphs. Using this pipeline, we collect LoCoMo, a dataset of very long-term conversations, each encompassing 300 turns and 9K tokens on avg., over up to 35 sessions. Based on LoCoMo, we present a comprehensive evaluation benchmark to measure long-term memory in models, encompassing question answering, event summarization, and multi-modal dialogue generation tasks. Our experimental results indicate that LLMs exhibit challenges in understanding lengthy conversations and comprehending long-range temporal and causal dynamics within dialogues. Employing strategies like long-context LLMs or RAG can offer improvements but these models still substantially lag behind human performance.
Abstract:In human-computer interaction, understanding user behaviors and tailoring systems accordingly is pivotal. To this end, general-purpose user representation learning based on behavior logs is emerging as a powerful tool in user modeling, offering adaptability to various downstream tasks such as item recommendations and ad conversion prediction, without the need to fine-tune the upstream user model. While this methodology has shown promise in contexts like search engines and e-commerce platforms, its fit for instant messaging apps, a cornerstone of modern digital communication, remains largely uncharted. These apps, with their distinct interaction patterns, data structures, and user expectations, necessitate specialized attention. We explore this user modeling approach with Snapchat data as a case study. Furthermore, we introduce a novel design and evaluation framework rooted in the principles of the Measurement Process Framework from social science research methodology. Using this new framework, we design a Transformer-based user model that can produce high-quality general-purpose user representations for instant messaging platforms like Snapchat.
Abstract:Instruction tuning has remarkably advanced large language models (LLMs) in understanding and responding to diverse human instructions. Despite the success in high-resource languages, its application in lower-resource ones faces challenges due to the imbalanced foundational abilities of LLMs across different languages, stemming from the uneven language distribution in their pre-training data. To tackle this issue, we propose pivot language guided generation (PLUG), an approach that utilizes a high-resource language, primarily English, as the pivot to enhance instruction tuning in lower-resource languages. It trains the model to first process instructions in the pivot language, and then produce responses in the target language. To evaluate our approach, we introduce a benchmark, X-AlpacaEval, of instructions in 4 languages (Chinese, Korean, Italian, and Spanish), each annotated by professional translators. Our approach demonstrates a significant improvement in the instruction-following abilities of LLMs by 29% on average, compared to directly responding in the target language alone. Further experiments validate the versatility of our approach by employing alternative pivot languages beyond English to assist languages where LLMs exhibit lower proficiency.
Abstract:The success of online social platforms hinges on their ability to predict and understand user behavior at scale. Here, we present data suggesting that context-aware modeling approaches may offer a holistic yet lightweight and potentially privacy-preserving representation of user engagement on online social platforms. Leveraging deep LSTM neural networks to analyze more than 100 million Snapchat sessions from almost 80.000 users, we demonstrate that patterns of active and passive use are predictable from past behavior (R2=0.345) and that the integration of context information substantially improves predictive performance compared to the behavioral baseline model (R2=0.522). Features related to smartphone connectivity status, location, temporal context, and weather were found to capture non-redundant variance in user engagement relative to features derived from histories of in-app behaviors. Further, we show that a large proportion of variance can be accounted for with minimal behavioral histories if momentary context information is considered (R2=0.44). These results indicate the potential of context-aware approaches for making models more efficient and privacy-preserving by reducing the need for long data histories. Finally, we employ model explainability techniques to glean preliminary insights into the underlying behavioral mechanisms. Our findings are consistent with the notion of context-contingent, habit-driven patterns of active and passive use, underscoring the value of contextualized representations of user behavior for predicting user engagement on social platforms.
Abstract:Despite its relevance, the maturity of NLP for social media pales in comparison with general-purpose models, metrics and benchmarks. This fragmented landscape makes it hard for the community to know, for instance, given a task, which is the best performing model and how it compares with others. To alleviate this issue, we introduce a unified benchmark for NLP evaluation in social media, SuperTweetEval, which includes a heterogeneous set of tasks and datasets combined, adapted and constructed from scratch. We benchmarked the performance of a wide range of models on SuperTweetEval and our results suggest that, despite the recent advances in language modelling, social media remains challenging.
Abstract:This paper introduces a large collection of time series data derived from Twitter, postprocessed using word embedding techniques, as well as specialized fine-tuned language models. This data comprises the past five years and captures changes in n-gram frequency, similarity, sentiment and topic distribution. The interface built on top of this data enables temporal analysis for detecting and characterizing shifts in meaning, including complementary information to trending metrics, such as sentiment and topic association over time. We release an online demo for easy experimentation, and we share code and the underlying aggregated data for future work. In this paper, we also discuss three case studies unlocked thanks to our platform, showcasing its potential for temporal linguistic analysis.
Abstract:Recent progress in language model pre-training has led to important improvements in Named Entity Recognition (NER). Nonetheless, this progress has been mainly tested in well-formatted documents such as news, Wikipedia, or scientific articles. In social media the landscape is different, in which it adds another layer of complexity due to its noisy and dynamic nature. In this paper, we focus on NER in Twitter, one of the largest social media platforms, and construct a new NER dataset, TweetNER7, which contains seven entity types annotated over 11,382 tweets from September 2019 to August 2021. The dataset was constructed by carefully distributing the tweets over time and taking representative trends as a basis. Along with the dataset, we provide a set of language model baselines and perform an analysis on the language model performance on the task, especially analyzing the impact of different time periods. In particular, we focus on three important temporal aspects in our analysis: short-term degradation of NER models over time, strategies to fine-tune a language model over different periods, and self-labeling as an alternative to lack of recently-labeled data. TweetNER7 is released publicly (https://huggingface.co/datasets/tner/tweetner7) along with the models fine-tuned on it (NER models have been integrated into TweetNLP and can be found athttps://github.com/asahi417/tner/tree/master/examples/tweetner7_paper).