Abstract:Gender-neutral pronouns are increasingly being introduced across Western languages. Recent evaluations have however demonstrated that English NLP systems are unable to correctly process gender-neutral pronouns, with the risk of erasing and misgendering non-binary individuals. This paper examines a Dutch coreference resolution system's performance on gender-neutral pronouns, specifically hen and die. In Dutch, these pronouns were only introduced in 2016, compared to the longstanding existence of singular they in English. We additionally compare two debiasing techniques for coreference resolution systems in non-binary contexts: Counterfactual Data Augmentation (CDA) and delexicalisation. Moreover, because pronoun performance can be hard to interpret from a general evaluation metric like LEA, we introduce an innovative evaluation metric, the pronoun score, which directly represents the portion of correctly processed pronouns. Our results reveal diminished performance on gender-neutral pronouns compared to gendered counterparts. Nevertheless, although delexicalisation fails to yield improvements, CDA substantially reduces the performance gap between gendered and gender-neutral pronouns. We further show that CDA remains effective in low-resource settings, in which a limited set of debiasing documents is used. This efficacy extends to previously unseen neopronouns, which are currently infrequently used but may gain popularity in the future, underscoring the viability of effective debiasing with minimal resources and low computational costs.
Abstract:Best practices for high conflict conversations like counseling or customer support almost always include recommendations to paraphrase the previous speaker. Although paraphrase classification has received widespread attention in NLP, paraphrases are usually considered independent from context, and common models and datasets are not applicable to dialog settings. In this work, we investigate paraphrases in dialog (e.g., Speaker 1: "That book is mine." becomes Speaker 2: "That book is yours."). We provide an operationalization of context-dependent paraphrases, and develop a training for crowd-workers to classify paraphrases in dialog. We introduce a dataset with utterance pairs from NPR and CNN news interviews annotated for context-dependent paraphrases. To enable analyses on label variation, the dataset contains 5,581 annotations on 600 utterance pairs. We present promising results with in-context learning and with token classification models for automatic paraphrase detection in dialog.
Abstract:Many existing benchmarks of large (multimodal) language models (LLMs) focus on measuring LLMs' academic proficiency, often with also an interest in comparing model performance with human test takers. While these benchmarks have proven key to the development of LLMs, they suffer from several limitations, including questionable measurement quality (e.g., Do they measure what they are supposed to in a reliable way?), lack of quality assessment on the item level (e.g., Are some items more important or difficult than others?) and unclear human population reference (e.g., To whom can the model be compared?). In response to these challenges, we propose leveraging knowledge from psychometrics - a field dedicated to the measurement of latent variables like academic proficiency - into LLM benchmarking. We make three primary contributions. First, we introduce PATCH: a novel framework for Psychometrics-AssisTed benCHmarking of LLMs. PATCH addresses the aforementioned limitations, presenting a new direction for LLM benchmark research. Second, we implement PATCH by measuring GPT-4 and Gemini-Pro-Vision's proficiency in 8th grade mathematics against 56 human populations. We show that adopting a psychometrics-based approach yields evaluation outcomes that diverge from those based on existing benchmarking practices. Third, we release 4 datasets to support measuring and comparing LLM proficiency in grade school mathematics and science against human populations.
Abstract:In human-computer interaction, understanding user behaviors and tailoring systems accordingly is pivotal. To this end, general-purpose user representation learning based on behavior logs is emerging as a powerful tool in user modeling, offering adaptability to various downstream tasks such as item recommendations and ad conversion prediction, without the need to fine-tune the upstream user model. While this methodology has shown promise in contexts like search engines and e-commerce platforms, its fit for instant messaging apps, a cornerstone of modern digital communication, remains largely uncharted. These apps, with their distinct interaction patterns, data structures, and user expectations, necessitate specialized attention. We explore this user modeling approach with Snapchat data as a case study. Furthermore, we introduce a novel design and evaluation framework rooted in the principles of the Measurement Process Framework from social science research methodology. Using this new framework, we design a Transformer-based user model that can produce high-quality general-purpose user representations for instant messaging platforms like Snapchat.
Abstract:Despite the massive success of fine-tuning large Pre-trained Language Models (PLMs) on a wide range of Natural Language Processing (NLP) tasks, they remain susceptible to out-of-distribution (OOD) and adversarial inputs. Data map (DM) is a simple yet effective dual-model approach that enhances the robustness of fine-tuned PLMs, which involves fine-tuning a model on the original training set (i.e. reference model), selecting a specified fraction of important training examples according to the training dynamics of the reference model, and fine-tuning the same model on these selected examples (i.e. main model). However, it suffers from the drawback of requiring fine-tuning the same model twice, which is computationally expensive for large models. In this paper, we first show that 1) training dynamics are highly transferable across different model sizes and different pre-training methods, and that 2) main models fine-tuned using DM learn faster than when using conventional Empirical Risk Minimization (ERM). Building on these observations, we propose a novel fine-tuning approach based on the DM method: Fine-Tuning by transFerring Training dynamics (FTFT). Compared with DM, FTFT uses more efficient reference models and then fine-tunes more capable main models for fewer steps. Our experiments show that FTFT achieves better generalization robustness than ERM while spending less than half of the training cost.
Abstract:We describe our experiments for SemEval-2023 Task 4 on the identification of human values behind arguments (ValueEval). Because human values are subjective concepts which require precise definitions, we hypothesize that incorporating the definitions of human values (in the form of annotation instructions and validated survey items) during model training can yield better prediction performance. We explore this idea and show that our proposed models perform better than the challenge organizers' baselines, with improvements in macro F1 scores of up to 18%.
Abstract:Fine-tuning pre-trained language models on downstream tasks with varying random seeds has been shown to be unstable, especially on small datasets. Many previous studies have investigated this instability and proposed methods to mitigate it. However, most studies only used the standard deviation of performance scores (SD) as their measure, which is a narrow characterization of instability. In this paper, we analyze SD and six other measures quantifying instability at different levels of granularity. Moreover, we propose a systematic framework to evaluate the validity of these measures. Finally, we analyze the consistency and difference between different measures by reassessing existing instability mitigation methods. We hope our results will inform the development of better measurements of fine-tuning instability.
Abstract:We introduce the task of microblog opinion summarisation (MOS) and share a dataset of 3100 gold-standard opinion summaries to facilitate research in this domain. The dataset contains summaries of tweets spanning a 2-year period and covers more topics than any other public Twitter summarisation dataset. Summaries are abstractive in nature and have been created by journalists skilled in summarising news articles following a template separating factual information (main story) from author opinions. Our method differs from previous work on generating gold-standard summaries from social media, which usually involves selecting representative posts and thus favours extractive summarisation models. To showcase the dataset's utility and challenges, we benchmark a range of abstractive and extractive state-of-the-art summarisation models and achieve good performance, with the former outperforming the latter. We also show that fine-tuning is necessary to improve performance and investigate the benefits of using different sample sizes.
Abstract:Linguistic style is an integral component of language. Recent advances in the development of style representations have increasingly used training objectives from authorship verification (AV): Do two texts have the same author? The assumption underlying the AV training task (same author approximates same writing style) enables self-supervised and, thus, extensive training. However, a good performance on the AV task does not ensure good "general-purpose" style representations. For example, as the same author might typically write about certain topics, representations trained on AV might also encode content information instead of style alone. We introduce a variation of the AV training task that controls for content using conversation or domain labels. We evaluate whether known style dimensions are represented and preferred over content information through an original variation to the recently proposed STEL framework. We find that representations trained by controlling for conversation are better than representations trained with domain or no content control at representing style independent from content.
Abstract:Text embedding models from Natural Language Processing can map text data (e.g. words, sentences, documents) to supposedly meaningful numerical representations (a.k.a. text embeddings). While such models are increasingly applied in social science research, one important issue is often not addressed: the extent to which these embeddings are valid representations of constructs relevant for social science research. We therefore propose the use of the classic construct validity framework to evaluate the validity of text embeddings. We show how this framework can be adapted to the opaque and high-dimensional nature of text embeddings, with application to survey questions. We include several popular text embedding methods (e.g. fastText, GloVe, BERT, Sentence-BERT, Universal Sentence Encoder) in our construct validity analyses. We find evidence of convergent and discriminant validity in some cases. We also show that embeddings can be used to predict respondent's answers to completely new survey questions. Furthermore, BERT-based embedding techniques and the Universal Sentence Encoder provide more valid representations of survey questions than do others. Our results thus highlight the necessity to examine the construct validity of text embeddings before deploying them in social science research.