Abstract:Human perception of language depends on personal backgrounds like gender and ethnicity. While existing studies have shown that large language models (LLMs) hold values that are closer to certain societal groups, it is unclear whether their prediction behaviors on subjective NLP tasks also exhibit a similar bias. In this study, leveraging the POPQUORN dataset which contains annotations of diverse demographic backgrounds, we conduct a series of experiments on four popular LLMs to investigate their capability to understand group differences and potential biases in their predictions for politeness and offensiveness. We find that for both tasks, model predictions are closer to the labels from White and female participants. We further explore prompting with the target demographic labels and show that including the target demographic in the prompt actually worsens the model's performance. More specifically, when being prompted to respond from the perspective of "Black" and "Asian" individuals, models show lower performance in predicting both overall scores as well as the scores from corresponding groups. Our results suggest that LLMs hold gender and racial biases for subjective NLP tasks and that demographic-infused prompts alone may be insufficient to mitigate such effects. Code and data are available at https://github.com/Jiaxin-Pei/LLM-Group-Bias.
Abstract:Prompting serves as the major way humans interact with Large Language Models (LLM). Commercial AI systems commonly define the role of the LLM in system prompts. For example, ChatGPT uses "You are a helpful assistant" as part of the default system prompt. But is "a helpful assistant" the best role for LLMs? In this study, we present a systematic evaluation of how social roles in system prompts affect model performance. We curate a list of 162 roles covering 6 types of interpersonal relationships and 8 types of occupations. Through extensive analysis of 3 popular LLMs and 2457 questions, we show that adding interpersonal roles in prompts consistently improves the models' performance over a range of questions. Moreover, while we find that using gender-neutral roles and specifying the role as the audience leads to better performances, predicting which role leads to the best performance remains a challenging task, and that frequency, similarity, and perplexity do not fully explain the effect of social roles on model performances. Our results can help inform the design of system prompts for AI systems. Code and data are available at https://github.com/Jiaxin-Pei/Prompting-with-Social-Roles.
Abstract:Despite its relevance, the maturity of NLP for social media pales in comparison with general-purpose models, metrics and benchmarks. This fragmented landscape makes it hard for the community to know, for instance, given a task, which is the best performing model and how it compares with others. To alleviate this issue, we introduce a unified benchmark for NLP evaluation in social media, SuperTweetEval, which includes a heterogeneous set of tasks and datasets combined, adapted and constructed from scratch. We benchmarked the performance of a wide range of models on SuperTweetEval and our results suggest that, despite the recent advances in language modelling, social media remains challenging.
Abstract:Linguistic style matching (LSM) in conversations can be reflective of several aspects of social influence such as power or persuasion. However, how LSM relates to the outcomes of online communication on platforms such as Reddit is an unknown question. In this study, we analyze a large corpus of two-party conversation threads in Reddit where we identify all occurrences of LSM using two types of style: the use of function words and formality. Using this framework, we examine how levels of LSM differ in conversations depending on several social factors within Reddit: post and subreddit features, conversation depth, user tenure, and the controversiality of a comment. Finally, we measure the change of LSM following loss of status after community banning. Our findings reveal the interplay of LSM in Reddit conversations with several community metrics, suggesting the importance of understanding conversation engagement when understanding community dynamics.
Abstract:Annotators are not fungible. Their demographics, life experiences, and backgrounds all contribute to how they label data. However, NLP has only recently considered how annotator identity might influence their decisions. Here, we present POPQUORN (the POtato-Prolific dataset for QUestion-Answering, Offensiveness, text Rewriting, and politeness rating with demographic Nuance). POPQUORN contains 45,000 annotations from 1,484 annotators, drawn from a representative sample regarding sex, age, and race as the US population. Through a series of analyses, we show that annotators' background plays a significant role in their judgments. Further, our work shows that backgrounds not previously considered in NLP (e.g., education), are meaningful and should be considered. Our study suggests that understanding the background of annotators and collecting labels from a demographically balanced pool of crowd workers is important to reduce the bias of datasets. The dataset, annotator background, and annotation interface are available at https://github.com/Jiaxin-Pei/potato-prolific-dataset .
Abstract:Large language models (LLMs) have been shown to perform well at a variety of syntactic, discourse, and reasoning tasks. While LLMs are increasingly deployed in many forms including conversational agents that interact with humans, we lack a grounded benchmark to measure how well LLMs understand \textit{social} language. Here, we introduce a new theory-driven benchmark, SocKET, that contains 58 NLP tasks testing social knowledge which we group into five categories: humor & sarcasm, offensiveness, sentiment & emotion, and trustworthiness. In tests on the benchmark, we demonstrate that current models attain only moderate performance but reveal significant potential for task transfer among different types and categories of tasks, which were predicted from theory. Through zero-shot evaluations, we show that pretrained models already possess some innate but limited capabilities of social language understanding and training on one category of tasks can improve zero-shot testing on others. Our benchmark provides a systematic way to analyze model performance on an important dimension of language and points to clear room for improvement to build more socially-aware LLMs. The associated resources are released at https://github.com/minjechoi/SOCKET.
Abstract:We present POTATO, the Portable text annotation tool, a free, fully open-sourced annotation system that 1) supports labeling many types of text and multimodal data; 2) offers easy-to-configure features to maximize the productivity of both deployers and annotators (convenient templates for common ML/NLP tasks, active learning, keypress shortcuts, keyword highlights, tooltips); and 3) supports a high degree of customization (editable UI, inserting pre-screening questions, attention and qualification tests). Experiments over two annotation tasks suggest that POTATO improves labeling speed through its specially-designed productivity features, especially for long documents and complex tasks. POTATO is available at https://github.com/davidjurgens/potato and will continue to be updated.
Abstract:Fairy tales are a common resource for young children to learn a language or understand how a society works. However, gender bias, e.g., stereotypical gender roles, in this literature may cause harm and skew children's world view. Instead of decades of qualitative and manual analysis of gender bias in fairy tales, we computationally analyze gender bias in a fairy tale dataset containing 624 fairy tales from 7 different cultures. We specifically examine gender difference in terms of moral foundations, which are measures of human morality, and events, which reveal human activities associated with each character. We find that the number of male characters is two times that of female characters, showing a disproportionate gender representation. Our analysis further reveal stereotypical portrayals of both male and female characters in terms of moral foundations and events. Female characters turn out more associated with care-, loyalty- and sanctity- related moral words, while male characters are more associated with fairness- and authority- related moral words. Female characters' events are often about emotion (e.g., weep), appearance (e.g., comb), household (e.g., bake), etc.; while male characters' events are more about profession (e.g., hunt), violence (e.g., destroy), justice (e.g., judge), etc. Gender bias in terms of moral foundations shows an obvious difference across cultures. For example, female characters are more associated with care and sanctity in high uncertainty-avoidance cultures which are less open to changes and unpredictability. Based on the results, we propose implications for children's literature and early literacy research.
Abstract:Whether the media faithfully communicate scientific information has long been a core issue to the science community. Automatically identifying paraphrased scientific findings could enable large-scale tracking and analysis of information changes in the science communication process, but this requires systems to understand the similarity between scientific information across multiple domains. To this end, we present the SCIENTIFIC PARAPHRASE AND INFORMATION CHANGE DATASET (SPICED), the first paraphrase dataset of scientific findings annotated for degree of information change. SPICED contains 6,000 scientific finding pairs extracted from news stories, social media discussions, and full texts of original papers. We demonstrate that SPICED poses a challenging task and that models trained on SPICED improve downstream performance on evidence retrieval for fact checking of real-world scientific claims. Finally, we show that models trained on SPICED can reveal large-scale trends in the degrees to which people and organizations faithfully communicate new scientific findings. Data, code, and pre-trained models are available at http://www.copenlu.com/publication/2022_emnlp_wright/.
Abstract:We propose MINT, a new Multilingual INTimacy analysis dataset covering 13,384 tweets in 10 languages including English, French, Spanish, Italian, Portuguese, Korean, Dutch, Chinese, Hindi, and Arabic. We benchmarked a list of popular multilingual pre-trained language models. The dataset is released along with the SemEval 2023 Task 9: Multilingual Tweet Intimacy Analysis (https://sites.google.com/umich.edu/semeval-2023-tweet-intimacy).