Computing Sciences Department, Bocconi University, Milan, Italy
Abstract:Large language models (LLMs) are rapidly transforming social science research by enabling the automation of labor-intensive tasks like data annotation and text analysis. However, LLM outputs vary significantly depending on the implementation choices made by researchers (e.g., model selection, prompting strategy, or temperature settings). Such variation can introduce systematic biases and random errors, which propagate to downstream analyses and cause Type I, Type II, Type S, or Type M errors. We call this LLM hacking. We quantify the risk of LLM hacking by replicating 37 data annotation tasks from 21 published social science research studies with 18 different models. Analyzing 13 million LLM labels, we test 2,361 realistic hypotheses to measure how plausible researcher choices affect statistical conclusions. We find incorrect conclusions based on LLM-annotated data in approximately one in three hypotheses for state-of-the-art models, and in half the hypotheses for small language models. While our findings show that higher task performance and better general model capabilities reduce LLM hacking risk, even highly accurate models do not completely eliminate it. The risk of LLM hacking decreases as effect sizes increase, indicating the need for more rigorous verification of findings near significance thresholds. Our extensive analysis of LLM hacking mitigation techniques emphasizes the importance of human annotations in reducing false positive findings and improving model selection. Surprisingly, common regression estimator correction techniques are largely ineffective in reducing LLM hacking risk, as they heavily trade off Type I vs. Type II errors. Beyond accidental errors, we find that intentional LLM hacking is unacceptably simple. With few LLMs and just a handful of prompt paraphrases, anything can be presented as statistically significant.
Abstract:Large language models (LLMs) are increasingly integrated into our daily lives and personalized. However, LLM personalization might also increase unintended side effects. Recent work suggests that persona prompting can lead models to falsely refuse user requests. However, no work has fully quantified the extent of this issue. To address this gap, we measure the impact of 15 sociodemographic personas (based on gender, race, religion, and disability) on false refusal. To control for other factors, we also test 16 different models, 3 tasks (Natural Language Inference, politeness, and offensiveness classification), and nine prompt paraphrases. We propose a Monte Carlo-based method to quantify this issue in a sample-efficient manner. Our results show that as models become more capable, personas impact the refusal rate less and less. Certain sociodemographic personas increase false refusal in some models, which suggests underlying biases in the alignment strategies or safety mechanisms. However, we find that the model choice and task significantly influence false refusals, especially in sensitive content tasks. Our findings suggest that persona effects have been overestimated, and might be due to other factors.
Abstract:Stories play a pivotal role in human communication, shaping beliefs and morals, particularly in children. As parents increasingly rely on large language models (LLMs) to craft bedtime stories, the presence of cultural and gender stereotypes in these narratives raises significant concerns. To address this issue, we present Biased Tales, a comprehensive dataset designed to analyze how biases influence protagonists' attributes and story elements in LLM-generated stories. Our analysis uncovers striking disparities. When the protagonist is described as a girl (as compared to a boy), appearance-related attributes increase by 55.26%. Stories featuring non-Western children disproportionately emphasize cultural heritage, tradition, and family themes far more than those for Western children. Our findings highlight the role of sociocultural bias in making creative AI use more equitable and diverse.
Abstract:Expert persona prompting -- assigning roles such as expert in math to language models -- is widely used for task improvement. However, prior work shows mixed results on its effectiveness, and does not consider when and why personas should improve performance. We analyze the literature on persona prompting for task improvement and distill three desiderata: 1) performance advantage of expert personas, 2) robustness to irrelevant persona attributes, and 3) fidelity to persona attributes. We then evaluate 9 state-of-the-art LLMs across 27 tasks with respect to these desiderata. We find that expert personas usually lead to positive or non-significant performance changes. Surprisingly, models are highly sensitive to irrelevant persona details, with performance drops of almost 30 percentage points. In terms of fidelity, we find that while higher education, specialization, and domain-relatedness can boost performance, their effects are often inconsistent or negligible across tasks. We propose mitigation strategies to improve robustness -- but find they only work for the largest, most capable models. Our findings underscore the need for more careful persona design and for evaluation schemes that reflect the intended effects of persona usage.
Abstract:People increasingly rely on Large Language Models (LLMs) for moral advice, which may influence humans' decisions. Yet, little is known about how closely LLMs align with human moral judgments. To address this, we introduce the Moral Dilemma Dataset, a benchmark of 1,618 real-world moral dilemmas paired with a distribution of human moral judgments consisting of a binary evaluation and a free-text rationale. We treat this problem as a pluralistic distributional alignment task, comparing the distributions of LLM and human judgments across dilemmas. We find that models reproduce human judgments only under high consensus; alignment deteriorates sharply when human disagreement increases. In parallel, using a 60-value taxonomy built from 3,783 value expressions extracted from rationales, we show that LLMs rely on a narrower set of moral values than humans. These findings reveal a pluralistic moral gap: a mismatch in both the distribution and diversity of values expressed. To close this gap, we introduce Dynamic Moral Profiling (DMP), a Dirichlet-based sampling method that conditions model outputs on human-derived value profiles. DMP improves alignment by 64.3% and enhances value diversity, offering a step toward more pluralistic and human-aligned moral guidance from LLMs.
Abstract:Human annotation variation (i.e., annotation disagreements) is common in NLP and often reflects important information such as task subjectivity and sample ambiguity. While Large Language Models (LLMs) are increasingly used for automatic annotation to reduce human effort, their evaluation often focuses on predicting the majority-voted "ground truth" labels. It is still unclear, however, whether these models also capture informative human annotation variation. Our work addresses this gap by extensively evaluating LLMs' ability to predict annotation disagreements without access to repeated human labels. Our results show that LLMs struggle with modeling disagreements, which can be overlooked by majority label-based evaluations. Notably, while RLVR-style (Reinforcement learning with verifiable rewards) reasoning generally boosts LLM performance, it degrades performance in disagreement prediction. Our findings highlight the critical need for evaluating and improving LLM annotators in disagreement modeling. Code and data at https://github.com/EdisonNi-hku/Disagreement_Prediction.
Abstract:Socioeconomic status (SES) fundamentally influences how people interact with each other and more recently, with digital technologies like Large Language Models (LLMs). While previous research has highlighted the interaction between SES and language technology, it was limited by reliance on proxy metrics and synthetic data. We survey 1,000 individuals from diverse socioeconomic backgrounds about their use of language technologies and generative AI, and collect 6,482 prompts from their previous interactions with LLMs. We find systematic differences across SES groups in language technology usage (i.e., frequency, performed tasks), interaction styles, and topics. Higher SES entails a higher level of abstraction, convey requests more concisely, and topics like 'inclusivity' and 'travel'. Lower SES correlates with higher anthropomorphization of LLMs (using ''hello'' and ''thank you'') and more concrete language. Our findings suggest that while generative language technologies are becoming more accessible to everyone, socioeconomic linguistic differences still stratify their use to exacerbate the digital divide. These differences underscore the importance of considering SES in developing language technologies to accommodate varying linguistic needs rooted in socioeconomic factors and limit the AI Gap across SES groups.
Abstract:People naturally vary in their annotations for subjective questions and some of this variation is thought to be due to the person's sociodemographic characteristics. LLMs have also been used to label data, but recent work has shown that models perform poorly when prompted with sociodemographic attributes, suggesting limited inherent sociodemographic knowledge. Here, we ask whether LLMs can be trained to be accurate sociodemographic models of annotator variation. Using a curated dataset of five tasks with standardized sociodemographics, we show that models do improve in sociodemographic prompting when trained but that this performance gain is largely due to models learning annotator-specific behaviour rather than sociodemographic patterns. Across all tasks, our results suggest that models learn little meaningful connection between sociodemographics and annotation, raising doubts about the current use of LLMs for simulating sociodemographic variation and behaviour.
Abstract:Large language models (LLMs) are helping millions of users write texts about diverse issues, and in doing so expose users to different ideas and perspectives. This creates concerns about issue bias, where an LLM tends to present just one perspective on a given issue, which in turn may influence how users think about this issue. So far, it has not been possible to measure which issue biases LLMs actually manifest in real user interactions, making it difficult to address the risks from biased LLMs. Therefore, we create IssueBench: a set of 2.49m realistic prompts for measuring issue bias in LLM writing assistance, which we construct based on 3.9k templates (e.g. "write a blog about") and 212 political issues (e.g. "AI regulation") from real user interactions. Using IssueBench, we show that issue biases are common and persistent in state-of-the-art LLMs. We also show that biases are remarkably similar across models, and that all models align more with US Democrat than Republican voter opinion on a subset of issues. IssueBench can easily be adapted to include other issues, templates, or tasks. By enabling robust and realistic measurement, we hope that IssueBench can bring a new quality of evidence to ongoing discussions about LLM biases and how to address them.
Abstract:Vision-language models (VLMs), which process image and text inputs, are increasingly integrated into chat assistants and other consumer AI applications. Without proper safeguards, however, VLMs may give harmful advice (e.g. how to self-harm) or encourage unsafe behaviours (e.g. to consume drugs). Despite these clear hazards, little work so far has evaluated VLM safety and the novel risks created by multimodal inputs. To address this gap, we introduce MSTS, a Multimodal Safety Test Suite for VLMs. MSTS comprises 400 test prompts across 40 fine-grained hazard categories. Each test prompt consists of a text and an image that only in combination reveal their full unsafe meaning. With MSTS, we find clear safety issues in several open VLMs. We also find some VLMs to be safe by accident, meaning that they are safe because they fail to understand even simple test prompts. We translate MSTS into ten languages, showing non-English prompts to increase the rate of unsafe model responses. We also show models to be safer when tested with text only rather than multimodal prompts. Finally, we explore the automation of VLM safety assessments, finding even the best safety classifiers to be lacking.