Abstract:Classification is a core NLP task architecture with many potential applications. While large language models (LLMs) have brought substantial advancements in text generation, their potential for enhancing classification tasks remains underexplored. To address this gap, we propose a framework for thoroughly investigating fine-tuning LLMs for classification, including both generation- and encoding-based approaches. We instantiate this framework in edit intent classification (EIC), a challenging and underexplored classification task. Our extensive experiments and systematic comparisons with various training approaches and a representative selection of LLMs yield new insights into their application for EIC. We investigate the generalizability of these findings on five further classification tasks. To demonstrate the proposed methods and address the data shortage for empirical edit analysis, we use our best-performing EIC model to create Re3-Sci2.0, a new large-scale dataset of 1,780 scientific document revisions with over 94k labeled edits. The quality of the dataset is assessed through human evaluation. The new dataset enables an in-depth empirical study of human editing behavior in academic writing. We make our experimental framework, models and data publicly available.
Abstract:Diagnostic reasoning is a key component of expert work in many domains. It is a hard, time-consuming activity that requires expertise, and AI research has investigated the ways automated systems can support this process. Yet, due to the complexity of natural language, the applications of AI for diagnostic reasoning to language-related tasks are lacking. To close this gap, we investigate diagnostic abductive reasoning (DAR) in the context of language-grounded tasks (NL-DAR). We propose a novel modeling framework for NL-DAR based on Pearl's structural causal models and instantiate it in a comprehensive study of scientific paper assessment in the biomedical domain. We use the resulting dataset to investigate the human decision-making process in NL-DAR and determine the potential of LLMs to support structured decision-making over text. Our framework, open resources and tools lay the groundwork for the empirical study of collaborative diagnostic reasoning in the age of LLMs, in the scholarly domain and beyond.
Abstract:Large language models (LLMs) bring unprecedented flexibility in defining and executing complex, creative natural language generation (NLG) tasks. Yet, this flexibility brings new challenges, as it introduces new degrees of freedom in formulating the task inputs and instructions and in evaluating model performance. To facilitate the exploration of creative NLG tasks, we propose a three-component research framework that consists of systematic input manipulation, reference data, and output measurement. We use this framework to explore citation text generation -- a popular scholarly NLP task that lacks consensus on the task definition and evaluation metric and has not yet been tackled within the LLM paradigm. Our results highlight the importance of systematically investigating both task instruction and input configuration when prompting LLMs, and reveal non-trivial relationships between different evaluation metrics used for citation text generation. Additional human generation and human evaluation experiments provide new qualitative insights into the task to guide future research in citation text generation. We make our code and data publicly available.
Abstract:Generalization and robustness to input variation are core desiderata of machine learning research. Language varies along several axes, most importantly, language instance (e.g. French) and domain (e.g. news). While adapting NLP models to new languages within a single domain, or to new domains within a single language, is widely studied, research in joint adaptation is hampered by the lack of evaluation datasets. This prevents the transfer of NLP systems from well-resourced languages and domains to non-dominant language-domain combinations. To address this gap, we introduce M2QA, a multi-domain multilingual question answering benchmark. M2QA includes 13,500 SQuAD 2.0-style question-answer instances in German, Turkish, and Chinese for the domains of product reviews, news, and creative writing. We use M2QA to explore cross-lingual cross-domain performance of fine-tuned models and state-of-the-art LLMs and investigate modular approaches to domain and language adaptation. We witness 1) considerable performance variations across domain-language combinations within model classes and 2) considerable performance drops between source and target language-domain combinations across all model sizes. We demonstrate that M2QA is far from solved, and new methods to effectively transfer both linguistic and domain-specific information are necessary. We make M2QA publicly available at https://github.com/UKPLab/m2qa.
Abstract:Collaborative review and revision of textual documents is the core of knowledge work and a promising target for empirical analysis and NLP assistance. Yet, a holistic framework that would allow modeling complex relationships between document revisions, reviews and author responses is lacking. To address this gap, we introduce Re3, a framework for joint analysis of collaborative document revision. We instantiate this framework in the scholarly domain, and present Re3-Sci, a large corpus of aligned scientific paper revisions manually labeled according to their action and intent, and supplemented with the respective peer reviews and human-written edit summaries. We use the new data to provide first empirical insights into collaborative document revision in the academic domain, and to assess the capabilities of state-of-the-art LLMs at automating edit analysis and facilitating text-based collaboration. We make our annotation environment and protocols, the resulting data and experimental code publicly available.
Abstract:The number of scientific articles produced every year is growing rapidly. Providing quality control over them is crucial for scientists and, ultimately, for the public good. In modern science, this process is largely delegated to peer review -- a distributed procedure in which each submission is evaluated by several independent experts in the field. Peer review is widely used, yet it is hard, time-consuming, and prone to error. Since the artifacts involved in peer review -- manuscripts, reviews, discussions -- are largely text-based, Natural Language Processing has great potential to improve reviewing. As the emergence of large language models (LLMs) has enabled NLP assistance for many new tasks, the discussion on machine-assisted peer review is picking up the pace. Yet, where exactly is help needed, where can NLP help, and where should it stand aside? The goal of our paper is to provide a foundation for the future efforts in NLP for peer-reviewing assistance. We discuss peer review as a general process, exemplified by reviewing at AI conferences. We detail each step of the process from manuscript submission to camera-ready revision, and discuss the associated challenges and opportunities for NLP assistance, illustrated by existing work. We then turn to the big challenges in NLP for peer review as a whole, including data acquisition and licensing, operationalization and experimentation, and ethical issues. To help consolidate community efforts, we create a companion repository that aggregates key datasets pertaining to peer review. Finally, we issue a detailed call for action for the scientific community, NLP and AI researchers, policymakers, and funding bodies to help bring the research in NLP for peer review forward. We hope that our work will help set the agenda for research in machine-assisted scientific quality control in the age of AI, within the NLP community and beyond.
Abstract:Long documents often exhibit structure with hierarchically organized elements of different functions, such as section headers and paragraphs. Despite the omnipresence of document structure, its role in natural language processing (NLP) remains opaque. Do long-document Transformer models acquire an internal representation of document structure during pre-training? How can structural information be communicated to a model after pre-training, and how does it influence downstream performance? To answer these questions, we develop a novel suite of probing tasks to assess structure-awareness of long-document Transformers, propose general-purpose structure infusion methods, and evaluate the effects of structure infusion on QASPER and Evidence Inference, two challenging long-document NLP tasks. Results on LED and LongT5 suggest that they acquire implicit understanding of document structure during pre-training, which can be further enhanced by structure infusion, leading to improved end-task performance. To foster research on the role of document structure in NLP modeling, we make our data and code publicly available.
Abstract:Recent years have seen impressive progress in AI-assisted writing, yet the developments in AI-assisted reading are lacking. We propose inline commentary as a natural vehicle for AI-based reading assistance, and present CARE: the first open integrated platform for the study of inline commentary and reading. CARE facilitates data collection for inline commentaries in a commonplace collaborative reading environment, and provides a framework for enhancing reading with NLP-based assistance, such as text classification, generation or question answering. The extensible behavioral logging allows unique insights into the reading and commenting behavior, and flexible configuration makes the platform easy to deploy in new scenarios. To evaluate CARE in action, we apply the platform in a user study dedicated to scholarly peer review. CARE facilitates the data collection and study of inline commentary in NLP, extrinsic evaluation of NLP assistance, and application prototyping. We invite the community to explore and build upon the open source implementation of CARE.
Abstract:The publication rates are skyrocketing across many fields of science, and it is difficult to stay up to date with the latest research. This makes automatically summarizing the latest findings and helping scholars to synthesize related work in a given area an attractive research objective. In this paper we study the problem of citation text generation, where given a set of cited papers and citing context the model should generate a citation text. While citation text generation has been tackled in prior work, existing studies use different datasets and task definitions, which makes it hard to study citation text generation systematically. To address this, we propose CiteBench: a benchmark for citation text generation that unifies the previous datasets and enables standardized evaluation of citation text generation models across task settings and domains. Using the new benchmark, we investigate the performance of multiple strong baselines, test their transferability between the datasets, and deliver new insights into task definition and evaluation to guide the future research in citation text generation. We make CiteBench publicly available at https://github.com/UKPLab/citebench.
Abstract:Peer review is a core component of scholarly publishing, yet it is time-consuming, requires considerable expertise, and is prone to error. The applications of NLP for peer reviewing assistance aim to mitigate those issues, but the lack of clearly licensed datasets and multi-domain corpora prevent the systematic study of NLP for peer review. To remedy this, we introduce NLPeer -- the first ethically sourced multidomain corpus of more than 5k papers and 11k review reports from five different venues. In addition to the new datasets of paper drafts, camera-ready versions and peer reviews from the NLP community, we establish a unified data representation, and augment previous peer review datasets to include parsed, structured paper representations, rich metadata and versioning information. Our work paves the path towards systematic, multi-faceted, evidence-based study of peer review in NLP and beyond. We make NLPeer publicly available.