Abstract:Computational social science research has made advances in machine learning and natural language processing that support content moderators in detecting harmful content. These advances often rely on training datasets annotated by crowdworkers for harmful content. In designing instructions for annotation tasks to generate training data for these algorithms, researchers often treat the harm concepts that we train algorithms to detect - 'hateful', 'offensive', 'toxic', 'racist', 'sexist', etc. - as interchangeable. In this work, we studied whether the way that researchers define 'harm' affects annotation outcomes. Using Venn diagrams, information gain comparisons, and content analyses, we reveal that annotators do not use the concepts 'hateful', 'offensive', and 'toxic' interchangeably. We identify that features of harm definitions and annotators' individual characteristics explain much of how annotators use these terms differently. Our results offer empirical evidence discouraging the common practice of using harm concepts interchangeably in content moderation research. Instead, researchers should make specific choices about which harm concepts to analyze based on their research goals. Recognizing that researchers are often resource constrained, we also encourage researchers to provide information to bound their findings when their concepts of interest differ from concepts that off-the-shelf harmful content detection algorithms identify. Finally, we encourage algorithm providers to ensure their instruments can adapt to contextually-specific content detection goals (e.g., soliciting instrument users' feedback).
Abstract:Large language models (LLMs) have been shown to perform well at a variety of syntactic, discourse, and reasoning tasks. While LLMs are increasingly deployed in many forms including conversational agents that interact with humans, we lack a grounded benchmark to measure how well LLMs understand \textit{social} language. Here, we introduce a new theory-driven benchmark, SocKET, that contains 58 NLP tasks testing social knowledge which we group into five categories: humor & sarcasm, offensiveness, sentiment & emotion, and trustworthiness. In tests on the benchmark, we demonstrate that current models attain only moderate performance but reveal significant potential for task transfer among different types and categories of tasks, which were predicted from theory. Through zero-shot evaluations, we show that pretrained models already possess some innate but limited capabilities of social language understanding and training on one category of tasks can improve zero-shot testing on others. Our benchmark provides a systematic way to analyze model performance on an important dimension of language and points to clear room for improvement to build more socially-aware LLMs. The associated resources are released at https://github.com/minjechoi/SOCKET.