Abstract:PyMilo is an open-source Python package that addresses the limitations of existing Machine Learning (ML) model storage formats by providing a transparent, reliable, and safe method for exporting and deploying trained models. Current formats, such as pickle and other binary formats, have significant problems, such as reliability, safety, and transparency issues. In contrast, PyMilo serializes ML models in a transparent non-executable format, enabling straightforward and safe model exchange, while also facilitating the deserialization and deployment of exported models in production environments. This package aims to provide a seamless, end-to-end solution for the exportation and importation of pre-trained ML models, which simplifies the model development and deployment pipeline.
Abstract:Fair graph clustering is crucial for ensuring equitable representation and treatment of diverse communities in network analysis. Traditional methods often ignore disparities among social, economic, and demographic groups, perpetuating biased outcomes and reinforcing inequalities. This study introduces fair graph clustering within the framework of the disparate impact doctrine, treating it as a joint optimization problem integrating clustering quality and fairness constraints. Given the NP-hard nature of this problem, we employ a semidefinite relaxation approach to approximate the underlying optimization problem. For up to medium-sized graphs, we utilize a singular value decomposition-based algorithm, while for larger graphs, we propose a novel algorithm based on the alternative direction method of multipliers. Unlike existing methods, our formulation allows for tuning the trade-off between clustering quality and fairness. Experimental results on graphs generated from the standard stochastic block model demonstrate the superiority of our approach in achieving an optimal accuracy-fairness trade-off compared to state-of-the-art methods.
Abstract:Huge corpora of textual data are always known to be a crucial need for training deep models such as transformer-based ones. This issue is emerging more in lower resource languages - like Farsi. We propose naab, the biggest cleaned and ready-to-use open-source textual corpus in Farsi. It contains about 130GB of data, 250 million paragraphs, and 15 billion words. The project name is derived from the Farsi word NAAB K which means pure and high grade. We also provide the raw version of the corpus called naab-raw and an easy-to-use preprocessor that can be employed by those who wanted to make a customized corpus.