Abstract:Medical research faces well-documented challenges in translating novel treatments into clinical practice. Publishing incentives encourage researchers to present "positive" findings, even when empirical results are equivocal. Consequently, it is well-documented that authors often spin study results, especially in article abstracts. Such spin can influence clinician interpretation of evidence and may affect patient care decisions. In this study, we ask whether the interpretation of trial results offered by Large Language Models (LLMs) is similarly affected by spin. This is important since LLMs are increasingly being used to trawl through and synthesize published medical evidence. We evaluated 22 LLMs and found that they are across the board more susceptible to spin than humans. They might also propagate spin into their outputs: We find evidence, e.g., that LLMs implicitly incorporate spin into plain language summaries that they generate. We also find, however, that LLMs are generally capable of recognizing spin, and can be prompted in a way to mitigate spin's impact on LLM outputs.
Abstract:Health-related discussions on social media like Reddit offer valuable insights, but extracting quantitative data from unstructured text is challenging. In this work, we present an adapted framework from QuaLLM into QuaLLM-Health for extracting clinically relevant quantitative data from Reddit discussions about glucagon-like peptide-1 (GLP-1) receptor agonists using large language models (LLMs). We collected 410k posts and comments from five GLP-1-related communities using the Reddit API in July 2024. After filtering for cancer-related discussions, 2,059 unique entries remained. We developed annotation guidelines to manually extract variables such as cancer survivorship, family cancer history, cancer types mentioned, risk perceptions, and discussions with physicians. Two domain-experts independently annotated a random sample of 100 entries to create a gold-standard dataset. We then employed iterative prompt engineering with OpenAI's "GPT-4o-mini" on the gold-standard dataset to build an optimized pipeline that allowed us to extract variables from the large dataset. The optimized LLM achieved accuracies above 0.85 for all variables, with precision, recall and F1 score macro averaged > 0.90, indicating balanced performance. Stability testing showed a 95% match rate across runs, confirming consistency. Applying the framework to the full dataset enabled efficient extraction of variables necessary for downstream analysis, costing under $3 and completing in approximately one hour. QuaLLM-Health demonstrates that LLMs can effectively and efficiently extract clinically relevant quantitative data from unstructured social media content. Incorporating human expertise and iterative prompt refinement ensures accuracy and reliability. This methodology can be adapted for large-scale analysis of patient-generated data across various health domains, facilitating valuable insights for healthcare research.