Abstract:Generative foundation models can revolutionize the design of semantic communication (SemCom) systems allowing high fidelity exchange of semantic information at ultra low rates. In this work, a generative SemCom framework with pretrained foundation models is proposed, where both uncoded forward-with-error and coded discard-with-error schemes are developed for the semantic decoder. To characterize the impact of transmission reliability on the perceptual quality of the regenerated signal, their mathematical relationship is analyzed from a rate-distortion-perception perspective, which is proved to be non-decreasing. The semantic values are defined to measure the semantic information of multimodal semantic features accordingly. We also investigate semantic-aware power allocation problems aiming at power consumption minimization for ultra low rate and high fidelity SemComs. To solve these problems, two semantic-aware power allocation methods are proposed by leveraging the non-decreasing property of the perception-error relationship. Numerically, perception-error functions and semantic values of semantic data streams under both schemes for image tasks are obtained based on the Kodak dataset. Simulation results show that our proposed semanticaware method significantly outperforms conventional approaches, particularly in the channel-coded case (up to 90% power saving).
Abstract:Recent advancements in diffusion models have made a significant breakthrough in generative modeling. The combination of the generative model and semantic communication (SemCom) enables high-fidelity semantic information exchange at ultra-low rates. A novel generative SemCom framework for image tasks is proposed, wherein pre-trained foundation models serve as semantic encoders and decoders for semantic feature extractions and image regenerations, respectively. The mathematical relationship between the transmission reliability and the perceptual quality of the regenerated image and the semantic values of semantic features are modeled, which are obtained by conducting numerical simulations on the Kodak dataset. We also investigate the semantic-aware power allocation problem, with the objective of minimizing the total power consumption while guaranteeing semantic performance. To solve this problem, two semanticaware power allocation methods are proposed by constraint decoupling and bisection search, respectively. Numerical results show that the proposed semantic-aware methods demonstrate superior performance compared to the conventional one in terms of total power consumption.
Abstract:Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.
Abstract:Federated learning (FL) as a promising edge-learning framework can effectively address the latency and privacy issues by featuring distributed learning at the devices and model aggregation in the central server. In order to enable efficient wireless data aggregation, over-the-air computation (AirComp) has recently been proposed and attracted immediate attention. However, fading of wireless channels can produce aggregate distortions in an AirComp-based FL scheme. To combat this effect, the concept of dynamic learning rate (DLR) is proposed in this work. We begin our discussion by considering multiple-input-single-output (MISO) scenario, since the underlying optimization problem is convex and has closed-form solution. We then extend our studies to more general multiple-input-multiple-output (MIMO) case and an iterative method is derived. Extensive simulation results demonstrate the effectiveness of the proposed scheme in reducing the aggregate distortion and guaranteeing the testing accuracy using the MNIST and CIFAR10 datasets. In addition, we present the asymptotic analysis and give a near-optimal receive beamforming design solution in closed form, which is verified by numerical simulations.