Abstract:Satellite communications are crucial for the evolution beyond fifth-generation networks. However, the dynamic nature of satellite channels and their inherent impairments present significant challenges. In this paper, a novel post-compensation scheme that combines the complex-valued extreme learning machine with augmented hidden layer (CELMAH) architecture and widely linear processing (WLP) is developed to address these issues by exploiting signal impropriety in satellite communications. Although CELMAH shares structural similarities with WLP, it employs a different core algorithm and does not fully exploit the signal impropriety. By incorporating WLP principles, we derive a tailored formulation suited to the network structure and propose the CELM augmented by widely linear least squares (CELM-WLLS) for post-distortion. The proposed approach offers enhanced communication robustness and is highly effective for satellite communication scenarios characterized by dynamic channel conditions and non-linear impairments. CELM-WLLS is designed to improve signal recovery performance and outperform traditional methods such as least square (LS) and minimum mean square error (MMSE). Compared to CELMAH, CELM-WLLS demonstrates approximately 0.8 dB gain in BER performance, and also achieves a two-thirds reduction in computational complexity, making it a more efficient solution.
Abstract:Machine learning relies heavily on data, yet the continuous growth of real-world data poses challenges for efficient dataset construction and training. A fundamental yet unsolved question is: given our current model and data, does a new data (sample/batch) need annotation/learning? Conventional approaches retain all available data, leading to non-optimal data and training efficiency. Active learning aims to reduce data redundancy by selecting a subset of samples to annotate, while it increases pipeline complexity and introduces bias. In this work, we propose Info-Coevolution, a novel framework that efficiently enables models and data to coevolve through online selective annotation with no bias. Leveraging task-specific models (and open-source models), it selectively annotates and integrates online and web data to improve datasets efficiently. For real-world datasets like ImageNet-1K, Info-Coevolution reduces annotation and training costs by 32\% without performance loss. It is able to automatically give the saving ratio without tuning the ratio. It can further reduce the annotation ratio to 50\% with semi-supervised learning. We also explore retrieval-based dataset enhancement using unlabeled open-source data. Code is available at https://github.com/NUS-HPC-AI-Lab/Info-Coevolution/.
Abstract:DiT-based video generation has achieved remarkable results, but research into enhancing existing models remains relatively unexplored. In this work, we introduce a training-free approach to enhance the coherence and quality of DiT-based generated videos, named Enhance-A-Video. The core idea is enhancing the cross-frame correlations based on non-diagonal temporal attention distributions. Thanks to its simple design, our approach can be easily applied to most DiT-based video generation frameworks without any retraining or fine-tuning. Across various DiT-based video generation models, our approach demonstrates promising improvements in both temporal consistency and visual quality. We hope this research can inspire future explorations in video generation enhancement.
Abstract:While large language models (LLMs) have shown remarkable potential in automating various tasks in digital chip design, the field of Photonic Integrated Circuits (PICs)-a promising solution to advanced chip designs-remains relatively unexplored in this context. The design of PICs is time-consuming and prone to errors due to the extensive and repetitive nature of code involved in photonic chip design. In this paper, we introduce PICBench, the first benchmarking and evaluation framework specifically designed to automate PIC design generation using LLMs, where the generated output takes the form of a netlist. Our benchmark consists of dozens of meticulously crafted PIC design problems, spanning from fundamental device designs to more complex circuit-level designs. It automatically evaluates both the syntax and functionality of generated PIC designs by comparing simulation outputs with expert-written solutions, leveraging an open-source simulator. We evaluate a range of existing LLMs, while also conducting comparative tests on various prompt engineering techniques to enhance LLM performance in automated PIC design. The results reveal the challenges and potential of LLMs in the PIC design domain, offering insights into the key areas that require further research and development to optimize automation in this field. Our benchmark and evaluation code is available at https://github.com/PICDA/PICBench.
Abstract:Caenorhabditis elegans (C. elegans) is an excellent model organism because of its short lifespan and high degree of homology with human genes, and it has been widely used in a variety of human health and disease models. However, the segmentation of C. elegans remains challenging due to the following reasons: 1) the activity trajectory of C. elegans is uncontrollable, and multiple nematodes often overlap, resulting in blurred boundaries of C. elegans. This makes it impossible to clearly study the life trajectory of a certain nematode; and 2) in the microscope images of overlapping C. elegans, the translucent tissues at the edges obscure each other, leading to inaccurate boundary segmentation. To solve these problems, a Bilayer Segmentation-Recombination Network (BR-Net) for the segmentation of C. elegans instances is proposed. The network consists of three parts: A Coarse Mask Segmentation Module (CMSM), a Bilayer Segmentation Module (BSM), and a Semantic Consistency Recombination Module (SCRM). The CMSM is used to extract the coarse mask, and we introduce a Unified Attention Module (UAM) in CMSM to make CMSM better aware of nematode instances. The Bilayer Segmentation Module (BSM) segments the aggregated C. elegans into overlapping and non-overlapping regions. This is followed by integration by the SCRM, where semantic consistency regularization is introduced to segment nematode instances more accurately. Finally, the effectiveness of the method is verified on the C. elegans dataset. The experimental results show that BR-Net exhibits good competitiveness and outperforms other recently proposed instance segmentation methods in processing C. elegans occlusion images.
Abstract:Deep learning (DL)-based methods have demonstrated remarkable achievements in addressing orthogonal frequency division multiplexing (OFDM) channel estimation challenges. However, existing DL-based methods mainly rely on separate real and imaginary inputs while ignoring the inherent correlation between the two streams, such as amplitude and phase information that are fundamental in communication signal processing. This paper proposes AE-DENet, a novel autoencoder(AE)-based data enhancement network to improve the performance of existing DL-based channel estimation methods. AE-DENet focuses on enriching the classic least square (LS) estimation input commonly used in DL-based methods by employing a learning-based data enhancement method, which extracts interaction features from the real and imaginary components and fuses them with the original real/imaginary streams to generate an enhanced input for better channel inference. Experimental findings in terms of the mean square error (MSE) results demonstrate that the proposed method enhances the performance of all state-of-the-art DL-based channel estimators with negligible added complexity. Furthermore, the proposed approach is shown to be robust to channel variations and high user mobility.
Abstract:The emergence of text-to-image generation models has led to the recognition that image enhancement, performed as post-processing, would significantly improve the visual quality of the generated images. Exploring diffusion models to enhance the generated images nevertheless is not trivial and necessitates to delicately enrich plentiful details while preserving the visual appearance of key content in the original image. In this paper, we propose a novel framework, namely FreeEnhance, for content-consistent image enhancement using the off-the-shelf image diffusion models. Technically, FreeEnhance is a two-stage process that firstly adds random noise to the input image and then capitalizes on a pre-trained image diffusion model (i.e., Latent Diffusion Models) to denoise and enhance the image details. In the noising stage, FreeEnhance is devised to add lighter noise to the region with higher frequency to preserve the high-frequent patterns (e.g., edge, corner) in the original image. In the denoising stage, we present three target properties as constraints to regularize the predicted noise, enhancing images with high acutance and high visual quality. Extensive experiments conducted on the HPDv2 dataset demonstrate that our FreeEnhance outperforms the state-of-the-art image enhancement models in terms of quantitative metrics and human preference. More remarkably, FreeEnhance also shows higher human preference compared to the commercial image enhancement solution of Magnific AI.
Abstract:In multi-label classification, machine learning encounters the challenge of domain generalization when handling tasks with distributions differing from the training data. Existing approaches primarily focus on vision object recognition and neglect the integration of natural language. Recent advancements in vision-language pre-training leverage supervision from extensive visual-language pairs, enabling learning across diverse domains and enhancing recognition in multi-modal scenarios. However, these approaches face limitations in loss function utilization, generality across backbones, and class-aware visual fusion. This paper proposes solutions to these limitations by inferring the actual loss, broadening evaluations to larger vision-language backbones, and introducing Mixup-CLIPood, which incorporates a novel mix-up loss for enhanced class-aware visual fusion. Our method demonstrates superior performance in domain generalization across multiple datasets.
Abstract:The surging demand for cloud computing resources, driven by the rapid growth of sophisticated large-scale models and data centers, underscores the critical importance of efficient and adaptive resource allocation. As major tech enterprises deploy massive infrastructures with thousands of GPUs, existing cloud platforms still struggle with low resource utilization due to key challenges: capturing hierarchical indicator structures, modeling non-Gaussian distributions, and decision-making under uncertainty. To address these challenges, we propose HRAMONY, an adaptive Hierarchical Attention-based Resource Modeling and Decision-Making System. HARMONY combines hierarchical multi-indicator distribution forecasting and uncertainty-aware Bayesian decision-making. It introduces a novel hierarchical attention mechanism that comprehensively models complex inter-indicator dependencies, enabling accurate predictions that can adapt to evolving environment states. By transforming Gaussian projections into adaptive non-Gaussian distributions via Normalizing Flows. Crucially, HARMONY leverages the full predictive distributions in an adaptive Bayesian process, proactively incorporating uncertainties to optimize resource allocation while robustly meeting SLA constraints under varying conditions. Extensive evaluations across four large-scale cloud datasets demonstrate HARMONY's state-of-the-art performance, significantly outperforming nine established methods. A month-long real-world deployment validated HARMONY's substantial practical impact, realizing over 35,000 GPU hours in savings and translating to $100K+ in cost reduction, showcasing its remarkable economic value through adaptive, uncertainty-aware scaling. Our code is available at https://github.com/Floating-LY/HARMONY1.
Abstract:In order to develop robots that can effectively serve as versatile and capable home assistants, it is crucial for them to reliably perceive and interact with a wide variety of objects across diverse environments. To this end, we proposed Open Vocabulary Mobile Manipulation as a key benchmark task for robotics: finding any object in a novel environment and placing it on any receptacle surface within that environment. We organized a NeurIPS 2023 competition featuring both simulation and real-world components to evaluate solutions to this task. Our baselines on the most challenging version of this task, using real perception in simulation, achieved only an 0.8% success rate; by the end of the competition, the best participants achieved an 10.8\% success rate, a 13x improvement. We observed that the most successful teams employed a variety of methods, yet two common threads emerged among the best solutions: enhancing error detection and recovery, and improving the integration of perception with decision-making processes. In this paper, we detail the results and methodologies used, both in simulation and real-world settings. We discuss the lessons learned and their implications for future research. Additionally, we compare performance in real and simulated environments, emphasizing the necessity for robust generalization to novel settings.