Abstract:Inverse Lithography Technology (ILT) has emerged as a promising solution for photo mask design and optimization. Relying on multi-beam mask writers, ILT enables the creation of free-form curvilinear mask shapes that enhance printed wafer image quality and process window. However, a major challenge in implementing curvilinear ILT for large-scale production is mask rule checking, an area currently under development by foundries and EDA vendors. Although recent research has incorporated mask complexity into the optimization process, much of it focuses on reducing e-beam shots, which does not align with the goals of curvilinear ILT. In this paper, we introduce a GPU-accelerated ILT algorithm that improves not only contour quality and process window but also the precision of curvilinear mask shapes. Our experiments on open benchmarks demonstrate a significant advantage of our algorithm over leading academic ILT engines.
Abstract:Advancements in chip design and manufacturing have enabled the processing of complex tasks such as deep learning and natural language processing, paving the way for the development of artificial general intelligence (AGI). AI, on the other hand, can be leveraged to innovate and streamline semiconductor technology from planning and implementation to manufacturing. In this paper, we present \textit{Intelligent OPC Engineer Assistant}, an AI/LLM-powered methodology designed to solve the core manufacturing-aware optimization problem known as optical proximity correction (OPC). The methodology involves a reinforcement learning-based OPC recipe search and a customized multi-modal agent system for recipe summarization. Experiments demonstrate that our methodology can efficiently build OPC recipes on various chip designs with specially handled design topologies, a task that typically requires the full-time effort of OPC engineers with years of experience.
Abstract:Optical proximity correction (OPC) is crucial for pushing the boundaries of semiconductor manufacturing and enabling the continued scaling of integrated circuits. While pixel-based OPC, termed as inverse lithography technology (ILT), has gained research interest due to its flexibility and precision. Its complexity and intricate features can lead to challenges in mask writing, increased defects, and higher costs, hence hindering widespread industrial adoption. In this paper, we propose DiffOPC, a differentiable OPC framework that enjoys the virtue of both edge-based OPC and ILT. By employing a mask rule-aware gradient-based optimization approach, DiffOPC efficiently guides mask edge segment movement during mask optimization, minimizing wafer error by propagating true gradients from the cost function back to the mask edges. Our approach achieves lower edge placement error while reducing manufacturing cost by half compared to state-of-the-art OPC techniques, bridging the gap between the high accuracy of pixel-based OPC and the practicality required for industrial adoption, thus offering a promising solution for advanced semiconductor manufacturing.
Abstract:In multi-label classification, machine learning encounters the challenge of domain generalization when handling tasks with distributions differing from the training data. Existing approaches primarily focus on vision object recognition and neglect the integration of natural language. Recent advancements in vision-language pre-training leverage supervision from extensive visual-language pairs, enabling learning across diverse domains and enhancing recognition in multi-modal scenarios. However, these approaches face limitations in loss function utilization, generality across backbones, and class-aware visual fusion. This paper proposes solutions to these limitations by inferring the actual loss, broadening evaluations to larger vision-language backbones, and introducing Mixup-CLIPood, which incorporates a novel mix-up loss for enhanced class-aware visual fusion. Our method demonstrates superior performance in domain generalization across multiple datasets.
Abstract:The finite-difference time-domain (FDTD) method, which is important in photonic hardware design flow, is widely adopted to solve time-domain Maxwell equations. However, FDTD is known for its prohibitive runtime cost, taking minutes to hours to simulate a single device. Recently, AI has been applied to realize orders-of-magnitude speedup in partial differential equation (PDE) solving. However, AI-based FDTD solvers for photonic devices have not been clearly formulated. Directly applying off-the-shelf models to predict the optical field dynamics shows unsatisfying fidelity and efficiency since the model primitives are agnostic to the unique physical properties of Maxwell equations and lack algorithmic customization. In this work, we thoroughly investigate the synergy between neural operator designs and the physical property of Maxwell equations and introduce a physics-inspired AI-based FDTD prediction framework PIC2O-Sim which features a causality-aware dynamic convolutional neural operator as its backbone model that honors the space-time causality constraints via careful receptive field configuration and explicitly captures the permittivity-dependent light propagation behavior via an efficient dynamic convolution operator. Meanwhile, we explore the trade-offs among prediction scalability, fidelity, and efficiency via a multi-stage partitioned time-bundling technique in autoregressive prediction. Multiple key techniques have been introduced to mitigate iterative error accumulation while maintaining efficiency advantages during autoregressive field prediction. Extensive evaluations on three challenging photonic device simulation tasks have shown the superiority of our PIC2O-Sim method, showing 51.2% lower roll-out prediction error, 23.5 times fewer parameters than state-of-the-art neural operators, providing 300-600x higher simulation speed than an open-source FDTD numerical solver.
Abstract:Lithography, transferring chip design masks to the silicon wafer, is the most important phase in modern semiconductor manufacturing flow. Due to the limitations of lithography systems, Extensive design optimizations are required to tackle the design and silicon mismatch. Inverse lithography technology (ILT) is one of the promising solutions to perform pre-fabrication optimization, termed mask optimization. Because of mask optimization problems' constrained non-convexity, numerical ILT solvers rely heavily on good initialization to avoid getting stuck on sub-optimal solutions. Machine learning (ML) techniques are hence proposed to generate mask initialization for ILT solvers with one-shot inference, targeting faster and better convergence during ILT. This paper addresses the question of \textit{whether ML models can directly generate high-quality optimized masks without engaging ILT solvers in the loop}. We propose an implicit learning ILT framework: ILILT, which leverages the implicit layer learning method and lithography-conditioned inputs to ground the model. Trained to understand the ILT optimization procedure, ILILT can outperform the state-of-the-art machine learning solutions, significantly improving efficiency and quality.
Abstract:Optical proximity correction (OPC) is a vital step to ensure printability in modern VLSI manufacturing. Various OPC approaches based on machine learning have been proposed to pursue performance and efficiency, which are typically data-driven and hardly involve any particular considerations of the OPC problem, leading to potential performance or efficiency bottlenecks. In this paper, we propose CAMO, a reinforcement learning-based OPC system that specifically integrates important principles of the OPC problem. CAMO explicitly involves the spatial correlation among the movements of neighboring segments and an OPC-inspired modulation for movement action selection. Experiments are conducted on both via layer patterns and metal layer patterns. The results demonstrate that CAMO outperforms state-of-the-art OPC engines from both academia and industry.
Abstract:Exploding predictive AI has enabled fast yet effective evaluation and decision-making in modern chip physical design flows. State-of-the-art frameworks typically include the objective of minimizing the mean square error (MSE) between the prediction and the ground truth. We argue the averaging effect of MSE induces limitations in both model training and deployment, and good MSE behavior does not guarantee the capability of these models to assist physical design flows which are likely sabotaged due to a small portion of prediction error. To address this, we propose mini-pixel batch gradient descent (MPGD), a plug-and-play optimization algorithm that takes the most informative entries into consideration, offering probably faster and better convergence. Experiments on representative benchmark suits show the significant benefits of MPGD on various physical design prediction tasks using CNN or Graph-based models.
Abstract:Lithography is fundamental to integrated circuit fabrication, necessitating large computation overhead. The advancement of machine learning (ML)-based lithography models alleviates the trade-offs between manufacturing process expense and capability. However, all previous methods regard the lithography system as an image-to-image black box mapping, utilizing network parameters to learn by rote mappings from massive mask-to-aerial or mask-to-resist image pairs, resulting in poor generalization capability. In this paper, we propose a new ML-based paradigm disassembling the rigorous lithographic model into non-parametric mask operations and learned optical kernels containing determinant source, pupil, and lithography information. By optimizing complex-valued neural fields to perform optical kernel regression from coordinates, our method can accurately restore lithography system using a small-scale training dataset with fewer parameters, demonstrating superior generalization capability as well. Experiments show that our framework can use 31% of parameters while achieving 69$\times$ smaller mean squared error with 1.3$\times$ higher throughput than the state-of-the-art.
Abstract:Multiple patterning lithography (MPL) is regarded as one of the most promising ways of overcoming the resolution limitations of conventional optical lithography due to the delay of next-generation lithography technology. As the feature size continues to decrease, layout decomposition for multiple patterning lithography (MPLD) technology is becoming increasingly crucial for improving the manufacturability in advanced nodes. The decomposition process refers to assigning the layout features to different mask layers according to the design rules and density requirements. When the number of masks $k \geq 3$, the MPLD problems are NP-hard and thus may suffer from runtime overhead for practical designs. However, the number of layout patterns is increasing exponentially in industrial layouts, which hinders the runtime performance of MPLD models. In this research, we substitute the CPU's dance link data structure with parallel GPU matrix operations to accelerate the solution for exact cover-based MPLD algorithms. Experimental results demonstrate that our system is capable of full-scale, lightning-fast layout decomposition, which can achieve more than 10$\times$ speed-up without quality degradation compared to state-of-the-art layout decomposition methods.