Abstract:Federated Learning (FL) is a machine learning technique that enables multiple entities to collaboratively learn a shared model without exchanging their local data. Over the past decade, FL systems have achieved substantial progress, scaling to millions of devices across various learning domains while offering meaningful differential privacy (DP) guarantees. Production systems from organizations like Google, Apple, and Meta demonstrate the real-world applicability of FL. However, key challenges remain, including verifying server-side DP guarantees and coordinating training across heterogeneous devices, limiting broader adoption. Additionally, emerging trends such as large (multi-modal) models and blurred lines between training, inference, and personalization challenge traditional FL frameworks. In response, we propose a redefined FL framework that prioritizes privacy principles rather than rigid definitions. We also chart a path forward by leveraging trusted execution environments and open-source ecosystems to address these challenges and facilitate future advancements in FL.
Abstract:In this paper, we investigate potential randomization approaches that can complement current practices of input-based methods (such as licensing data and prompt filtering) and output-based methods (such as recitation checker, license checker, and model-based similarity score) for copyright protection. This is motivated by the inherent ambiguity of the rules that determine substantial similarity in copyright precedents. Given that there is no quantifiable measure of substantial similarity that is agreed upon, complementary approaches can potentially further decrease liability. Similar randomized approaches, such as differential privacy, have been successful in mitigating privacy risks. This document focuses on the technical and research perspective on mitigating copyright violation and hence is not confidential. After investigating potential solutions and running numerical experiments, we concluded that using the notion of Near Access-Freeness (NAF) to measure the degree of substantial similarity is challenging, and the standard approach of training a Differentially Private (DP) model costs significantly when used to ensure NAF. Alternative approaches, such as retrieval models, might provide a more controllable scheme for mitigating substantial similarity.
Abstract:We present the findings of the first NeurIPS competition on unlearning, which sought to stimulate the development of novel algorithms and initiate discussions on formal and robust evaluation methodologies. The competition was highly successful: nearly 1,200 teams from across the world participated, and a wealth of novel, imaginative solutions with different characteristics were contributed. In this paper, we analyze top solutions and delve into discussions on benchmarking unlearning, which itself is a research problem. The evaluation methodology we developed for the competition measures forgetting quality according to a formal notion of unlearning, while incorporating model utility for a holistic evaluation. We analyze the effectiveness of different instantiations of this evaluation framework vis-a-vis the associated compute cost, and discuss implications for standardizing evaluation. We find that the ranking of leading methods remains stable under several variations of this framework, pointing to avenues for reducing the cost of evaluation. Overall, our findings indicate progress in unlearning, with top-performing competition entries surpassing existing algorithms under our evaluation framework. We analyze trade-offs made by different algorithms and strengths or weaknesses in terms of generalizability to new datasets, paving the way for advancing both benchmarking and algorithm development in this important area.
Abstract:The growing use of large language model (LLM)-based conversational agents to manage sensitive user data raises significant privacy concerns. While these agents excel at understanding and acting on context, this capability can be exploited by malicious actors. We introduce a novel threat model where adversarial third-party apps manipulate the context of interaction to trick LLM-based agents into revealing private information not relevant to the task at hand. Grounded in the framework of contextual integrity, we introduce AirGapAgent, a privacy-conscious agent designed to prevent unintended data leakage by restricting the agent's access to only the data necessary for a specific task. Extensive experiments using Gemini, GPT, and Mistral models as agents validate our approach's effectiveness in mitigating this form of context hijacking while maintaining core agent functionality. For example, we show that a single-query context hijacking attack on a Gemini Ultra agent reduces its ability to protect user data from 94% to 45%, while an AirGapAgent achieves 97% protection, rendering the same attack ineffective.
Abstract:We study $L_2$ mean estimation under central differential privacy and communication constraints, and address two key challenges: firstly, existing mean estimation schemes that simultaneously handle both constraints are usually optimized for $L_\infty$ geometry and rely on random rotation or Kashin's representation to adapt to $L_2$ geometry, resulting in suboptimal leading constants in mean square errors (MSEs); secondly, schemes achieving order-optimal communication-privacy trade-offs do not extend seamlessly to streaming differential privacy (DP) settings (e.g., tree aggregation or matrix factorization), rendering them incompatible with DP-FTRL type optimizers. In this work, we tackle these issues by introducing a novel privacy accounting method for the sparsified Gaussian mechanism that incorporates the randomness inherent in sparsification into the DP noise. Unlike previous approaches, our accounting algorithm directly operates in $L_2$ geometry, yielding MSEs that fast converge to those of the uncompressed Gaussian mechanism. Additionally, we extend the sparsification scheme to the matrix factorization framework under streaming DP and provide a precise accountant tailored for DP-FTRL type optimizers. Empirically, our method demonstrates at least a 100x improvement of compression for DP-SGD across various FL tasks.
Abstract:Federated Learning and Analytics (FLA) have seen widespread adoption by technology platforms for processing sensitive on-device data. However, basic FLA systems have privacy limitations: they do not necessarily require anonymization mechanisms like differential privacy (DP), and provide limited protections against a potentially malicious service provider. Adding DP to a basic FLA system currently requires either adding excessive noise to each device's updates, or assuming an honest service provider that correctly implements the mechanism and only uses the privatized outputs. Secure multiparty computation (SMPC) -based oblivious aggregations can limit the service provider's access to individual user updates and improve DP tradeoffs, but the tradeoffs are still suboptimal, and they suffer from scalability challenges and susceptibility to Sybil attacks. This paper introduces a novel system architecture that leverages trusted execution environments (TEEs) and open-sourcing to both ensure confidentiality of server-side computations and provide externally verifiable privacy properties, bolstering the robustness and trustworthiness of private federated computations.
Abstract:Cascades are a common type of machine learning systems in which a large, remote model can be queried if a local model is not able to accurately label a user's data by itself. Serving stacks for large language models (LLMs) increasingly use cascades due to their ability to preserve task performance while dramatically reducing inference costs. However, applying cascade systems in situations where the local model has access to sensitive data constitutes a significant privacy risk for users since such data could be forwarded to the remote model. In this work, we show the feasibility of applying cascade systems in such setups by equipping the local model with privacy-preserving techniques that reduce the risk of leaking private information when querying the remote model. To quantify information leakage in such setups, we introduce two privacy measures. We then propose a system that leverages the recently introduced social learning paradigm in which LLMs collaboratively learn from each other by exchanging natural language. Using this paradigm, we demonstrate on several datasets that our methods minimize the privacy loss while at the same time improving task performance compared to a non-cascade baseline.
Abstract:Service providers of large language model (LLM) applications collect user instructions in the wild and use them in further aligning LLMs with users' intentions. These instructions, which potentially contain sensitive information, are annotated by human workers in the process. This poses a new privacy risk not addressed by the typical private optimization. To this end, we propose using synthetic instructions to replace real instructions in data annotation and model fine-tuning. Formal differential privacy is guaranteed by generating those synthetic instructions using privately fine-tuned generators. Crucial in achieving the desired utility is our novel filtering algorithm that matches the distribution of the synthetic instructions to that of the real ones. In both supervised fine-tuning and reinforcement learning from human feedback, our extensive experiments demonstrate the high utility of the final set of synthetic instructions by showing comparable results to real instructions. In supervised fine-tuning, models trained with private synthetic instructions outperform leading open-source models such as Vicuna.
Abstract:Fine-tuning is a common and effective method for tailoring large language models (LLMs) to specialized tasks and applications. In this paper, we study the privacy implications of fine-tuning LLMs on user data. To this end, we define a realistic threat model, called user inference, wherein an attacker infers whether or not a user's data was used for fine-tuning. We implement attacks for this threat model that require only a small set of samples from a user (possibly different from the samples used for training) and black-box access to the fine-tuned LLM. We find that LLMs are susceptible to user inference attacks across a variety of fine-tuning datasets, at times with near perfect attack success rates. Further, we investigate which properties make users vulnerable to user inference, finding that outlier users (i.e. those with data distributions sufficiently different from other users) and users who contribute large quantities of data are most susceptible to attack. Finally, we explore several heuristics for mitigating privacy attacks. We find that interventions in the training algorithm, such as batch or per-example gradient clipping and early stopping fail to prevent user inference. However, limiting the number of fine-tuning samples from a single user can reduce attack effectiveness, albeit at the cost of reducing the total amount of fine-tuning data.
Abstract:We propose new techniques for reducing communication in private federated learning without the need for setting or tuning compression rates. Our on-the-fly methods automatically adjust the compression rate based on the error induced during training, while maintaining provable privacy guarantees through the use of secure aggregation and differential privacy. Our techniques are provably instance-optimal for mean estimation, meaning that they can adapt to the ``hardness of the problem" with minimal interactivity. We demonstrate the effectiveness of our approach on real-world datasets by achieving favorable compression rates without the need for tuning.