Abstract:Existing methods for adapting large language models (LLMs) to new tasks are not suited to multi-task adaptation because they modify all the model weights -- causing destructive interference between tasks. The resulting effects, such as catastrophic forgetting of earlier tasks, make it challenging to obtain good performance on multiple tasks at the same time. To mitigate this, we propose Lottery Ticket Adaptation (LoTA), a sparse adaptation method that identifies and optimizes only a sparse subnetwork of the model. We evaluate LoTA on a wide range of challenging tasks such as instruction following, reasoning, math, and summarization. LoTA obtains better performance than full fine-tuning and low-rank adaptation (LoRA), and maintains good performance even after training on other tasks -- thus, avoiding catastrophic forgetting. By extracting and fine-tuning over lottery tickets (or sparse task vectors), LoTA also enables model merging over highly dissimilar tasks. Our code is made publicly available at https://github.com/kiddyboots216/lottery-ticket-adaptation.
Abstract:Maximum Manifold Capacity Representations (MMCR) is a recent multi-view self-supervised learning (MVSSL) method that matches or surpasses other leading MVSSL methods. MMCR is intriguing because it does not fit neatly into any of the commonplace MVSSL lineages, instead originating from a statistical mechanical perspective on the linear separability of data manifolds. In this paper, we seek to improve our understanding and our utilization of MMCR. To better understand MMCR, we leverage tools from high dimensional probability to demonstrate that MMCR incentivizes alignment and uniformity of learned embeddings. We then leverage tools from information theory to show that such embeddings maximize a well-known lower bound on mutual information between views, thereby connecting the geometric perspective of MMCR to the information-theoretic perspective commonly discussed in MVSSL. To better utilize MMCR, we mathematically predict and experimentally confirm non-monotonic changes in the pretraining loss akin to double descent but with respect to atypical hyperparameters. We also discover compute scaling laws that enable predicting the pretraining loss as a function of gradients steps, batch size, embedding dimension and number of views. We then show that MMCR, originally applied to image data, is performant on multimodal image-text data. By more deeply understanding the theoretical and empirical behavior of MMCR, our work reveals insights on improving MVSSL methods.
Abstract:Low-rank adaptation of large models, particularly LoRA, has gained traction due to its computational efficiency. This efficiency, contrasted with the prohibitive costs of full-model fine-tuning, means that practitioners often turn to LoRA and sometimes without a complete understanding of its ramifications. In this study, we focus on fairness and ask whether LoRA has an unexamined impact on utility, calibration, and resistance to membership inference across different subgroups (e.g., genders, races, religions) compared to a full-model fine-tuning baseline. We present extensive experiments across vision and language domains and across classification and generation tasks using ViT-Base, Swin-v2-Large, Llama-2 7B, and Mistral 7B. Intriguingly, experiments suggest that while one can isolate cases where LoRA exacerbates model bias across subgroups, the pattern is inconsistent -- in many cases, LoRA has equivalent or even improved fairness compared to the base model or its full fine-tuning baseline. We also examine the complications of evaluating fine-tuning fairness relating to task design and model token bias, calling for more careful fairness evaluations in future work.
Abstract:We study $L_2$ mean estimation under central differential privacy and communication constraints, and address two key challenges: firstly, existing mean estimation schemes that simultaneously handle both constraints are usually optimized for $L_\infty$ geometry and rely on random rotation or Kashin's representation to adapt to $L_2$ geometry, resulting in suboptimal leading constants in mean square errors (MSEs); secondly, schemes achieving order-optimal communication-privacy trade-offs do not extend seamlessly to streaming differential privacy (DP) settings (e.g., tree aggregation or matrix factorization), rendering them incompatible with DP-FTRL type optimizers. In this work, we tackle these issues by introducing a novel privacy accounting method for the sparsified Gaussian mechanism that incorporates the randomness inherent in sparsification into the DP noise. Unlike previous approaches, our accounting algorithm directly operates in $L_2$ geometry, yielding MSEs that fast converge to those of the uncompressed Gaussian mechanism. Additionally, we extend the sparsification scheme to the matrix factorization framework under streaming DP and provide a precise accountant tailored for DP-FTRL type optimizers. Empirically, our method demonstrates at least a 100x improvement of compression for DP-SGD across various FL tasks.
Abstract:We propose sandwiching standard image and video codecs between pre- and post-processing neural networks. The networks are jointly trained through a differentiable codec proxy to minimize a given rate-distortion loss. This sandwich architecture not only improves the standard codec's performance on its intended content, it can effectively adapt the codec to other types of image/video content and to other distortion measures. Essentially, the sandwich learns to transmit ``neural code images'' that optimize overall rate-distortion performance even when the overall problem is well outside the scope of the codec's design. Through a variety of examples, we apply the sandwich architecture to sources with different numbers of channels, higher resolution, higher dynamic range, and perceptual distortion measures. The results demonstrate substantial improvements (up to 9 dB gains or up to 30\% bitrate reductions) compared to alternative adaptations. We derive VQ equivalents for the sandwich, establish optimality properties, and design differentiable codec proxies approximating current standard codecs. We further analyze model complexity, visual quality under perceptual metrics, as well as sandwich configurations that offer interesting potentials in image/video compression and streaming.
Abstract:Scaling laws provide important insights that can guide the design of large language models (LLMs). Existing work has primarily focused on studying scaling laws for pretraining (upstream) loss. However, in transfer learning settings, in which LLMs are pretrained on an unsupervised dataset and then finetuned on a downstream task, we often also care about the downstream performance. In this work, we study the scaling behavior in a transfer learning setting, where LLMs are finetuned for machine translation tasks. Specifically, we investigate how the choice of the pretraining data and its size affect downstream performance (translation quality) as judged by two metrics: downstream cross-entropy and BLEU score. Our experiments indicate that the size of the finetuning dataset and the distribution alignment between the pretraining and downstream data significantly influence the scaling behavior. With sufficient alignment, both downstream cross-entropy and BLEU score improve monotonically with more pretraining data. In such cases, we show that it is possible to predict the downstream BLEU score with good accuracy using a log-law. However, there are also cases where moderate misalignment causes the BLEU score to fluctuate or get worse with more pretraining, whereas downstream cross-entropy monotonically improves. By analyzing these observations, we provide new practical insights for choosing appropriate pretraining data.
Abstract:The high communication cost of sending model updates from the clients to the server is a significant bottleneck for scalable federated learning (FL). Among existing approaches, state-of-the-art bitrate-accuracy tradeoffs have been achieved using stochastic compression methods -- in which the client $n$ sends a sample from a client-only probability distribution $q_{\phi^{(n)}}$, and the server estimates the mean of the clients' distributions using these samples. However, such methods do not take full advantage of the FL setup where the server, throughout the training process, has side information in the form of a pre-data distribution $p_{\theta}$ that is close to the client's distribution $q_{\phi^{(n)}}$ in Kullback-Leibler (KL) divergence. In this work, we exploit this closeness between the clients' distributions $q_{\phi^{(n)}}$'s and the side information $p_{\theta}$ at the server, and propose a framework that requires approximately $D_{KL}(q_{\phi^{(n)}}|| p_{\theta})$ bits of communication. We show that our method can be integrated into many existing stochastic compression frameworks such as FedPM, Federated SGLD, and QSGD to attain the same (and often higher) test accuracy with up to $50$ times reduction in the bitrate.
Abstract:We study the mean estimation problem under communication and local differential privacy constraints. While previous work has proposed \emph{order}-optimal algorithms for the same problem (i.e., asymptotically optimal as we spend more bits), \emph{exact} optimality (in the non-asymptotic setting) still has not been achieved. In this work, we take a step towards characterizing the \emph{exact}-optimal approach in the presence of shared randomness (a random variable shared between the server and the user) and identify several necessary conditions for \emph{exact} optimality. We prove that one of the necessary conditions is to utilize a rotationally symmetric shared random codebook. Based on this, we propose a randomization mechanism where the codebook is a randomly rotated simplex -- satisfying the necessary properties of the \emph{exact}-optimal codebook. The proposed mechanism is based on a $k$-closest encoding which we prove to be \emph{exact}-optimal for the randomly rotated simplex codebook.
Abstract:We propose sandwiched video compression -- a video compression system that wraps neural networks around a standard video codec. The sandwich framework consists of a neural pre- and post-processor with a standard video codec between them. The networks are trained jointly to optimize a rate-distortion loss function with the goal of significantly improving over the standard codec in various compression scenarios. End-to-end training in this setting requires a differentiable proxy for the standard video codec, which incorporates temporal processing with motion compensation, inter/intra mode decisions, and in-loop filtering. We propose differentiable approximations to key video codec components and demonstrate that the neural codes of the sandwich lead to significantly better rate-distortion performance compared to compressing the original frames of the input video in two important scenarios. When transporting high-resolution video via low-resolution HEVC, the sandwich system obtains 6.5 dB improvements over standard HEVC. More importantly, using the well-known perceptual similarity metric, LPIPS, we observe $~30 \%$ improvements in rate at the same quality over HEVC. Last but not least we show that pre- and post-processors formed by very modestly-parameterized, light-weight networks can closely approximate these results.
Abstract:One main challenge in federated learning is the large communication cost of exchanging weight updates from clients to the server at each round. While prior work has made great progress in compressing the weight updates through gradient compression methods, we propose a radically different approach that does not update the weights at all. Instead, our method freezes the weights at their initial \emph{random} values and learns how to sparsify the random network for the best performance. To this end, the clients collaborate in training a \emph{stochastic} binary mask to find the optimal sparse random network within the original one. At the end of the training, the final model is a sparse network with random weights -- or a subnetwork inside the dense random network. We show improvements in accuracy, communication (less than $1$ bit per parameter (bpp)), convergence speed, and final model size (less than $1$ bpp) over relevant baselines on MNIST, EMNIST, CIFAR-10, and CIFAR-100 datasets, in the low bitrate regime under various system configurations.