Abstract:In this paper, we investigate the precoder design for user-centric network (UCN) massive multiple-input multiple-output (mMIMO) downlink with matrix manifold optimization. In UCN mMIMO systems, each user terminal (UT) is served by a subset of base stations (BSs) instead of all the BSs, facilitating the implementation of the system and lowering the dimension of the precoders to be designed. By proving that the precoder set satisfying the per-BS power constraints forms a Riemannian submanifold of a linear product manifold, we transform the constrained precoder design problem in Euclidean space to an unconstrained one on the Riemannian submanifold. Riemannian ingredients, including orthogonal projection, Riemannian gradient, retraction and vector transport, of the problem on the Riemannian submanifold are further derived, with which the Riemannian conjugate gradient (RCG) design method is proposed for solving the unconstrained problem. The proposed method avoids the inverses of large dimensional matrices, which is beneficial in practice. The complexity analyses show the high computational efficiency of RCG precoder design. Simulation results demonstrate the numerical superiority of the proposed precoder design and the high efficiency of the UCN mMIMO system.
Abstract:We investigate the weighted sum-rate (WSR) maximization linear precoder design for massive MIMO downlink and propose a unified matrix manifold optimization framework applicable to total power constraint (TPC), per-user power constraint (PUPC) and per-antenna power constraint (PAPC). Particularly, we prove that the precoders under TPC, PUPC and PAPC are on different Riemannian submanifolds, and transform the constrained problems in Euclidean space to unconstrained ones on manifolds. In accordance with this, we derive Riemannian ingredients including orthogonal projection, Riemannian gradient, Riemannian Hessian, retraction and vector transport, which are needed for precoder design in matrix manifold framework. Then, Riemannian design methods using Riemannian steepest descent, Riemannian conjugate gradient and Riemannian trust region are provided to design the WSR-maximization precoders under TPC, PUPC or PAPC. Riemannian methods are free of the inverse of large dimensional matrix, which is of great significance for practice. Complexity analysis and performance simulations demonstrate the advantages of the proposed precoder design.