Abstract:Fluid antenna system (FAS) and movable antenna (MA) have recently emerged as promising technologies to exploit new spatial degrees of freedom (DoFs), which have attracted growing attention in wireless communication. In this paper, we propose a new rotatable antenna (RA) model to improve the performance of wireless communication systems. Different from conventional fixed antennas, the proposed RA system can flexibly alter the three-dimensional (3D) boresight direction of each antenna independently by adjusting its deflection angles to achieve a desired array directional gain pattern. Specifically, we investigate an RA-enabled uplink communication system, where the receive beamforming and the deflection angles of all RAs at the base station (BS) are jointly optimized to maximize the minimum signal-to-interference-plus-noise ratio (SINR) among all the users. In the special single-user and free-space propagation setup, the optimal deflection angles of RAs are derived in closed form with the maximum-ratio combining (MRC) beamformer applied at the BS. Moreover, we analyze the asymptotic performance with an infinite number of antennas based on this solution, which theoretically proves that the RA system can achieve a higher array gain as compared to the fixed-antenna system. In the general multi-user and multi-path channel setup, we first propose an alternating optimization (AO) algorithm to alternately optimize the receive beamforming and the deflection angles of RAs in an iterative manner. Then, a two-stage algorithm that solves the formulated problem without the need for iteration is further proposed to reduce computational complexity. Simulation results are provided to validate our analytical results and demonstrate that the proposed RA system can significantly outperform other benchmark schemes.
Abstract:Six-dimensional movable antenna (6DMA) is a promising solution for enhancing wireless network capacity through the adjustment of both three-dimensional (3D) positions and 3D rotations of distributed antenna surfaces. Previous works mainly consider 6DMA surfaces composed of active antenna elements, thus termed as active 6DMA. In this letter, we propose a new passive 6DMA system consisting of distributed passive intelligent reflecting surfaces (IRSs) that can be adjusted in terms of 3D position and 3D rotation. Specifically, we study a passive 6DMA-aided multiuser uplink system and aim to maximize the users' achievable sum rate by jointly optimizing the 3D positions, 3D rotations, and reflection coefficients of all passive 6DMA surfaces, as well as the receive beamforming matrix at the base station (BS). To solve this challenging non-convex optimization problem, we propose an alternating optimization (AO) algorithm that decomposes it into three subproblems and solves them alternately in an iterative manner. Numerical results are presented to investigate the performance of the proposed passive 6DMA system under different configurations and demonstrate its superior performance over the traditional fixed-IRS counterpart for both directive and isotropic radiation patterns of passive reflecting elements.
Abstract:In this letter, we propose a six-dimensional movable antenna (6DMA)-aided cell-free massive multiple-input multiple-output (MIMO) system to fully exploit its macro spatial diversity, where a set of distributed access points (APs), each equipped with multiple 6DMA surfaces, cooperatively serve all users in a given area. Connected to a central processing unit (CPU) via fronthaul links, 6DMA-APs can optimize their combining vectors for decoding the users' information based on either local channel state information (CSI) or global CSI shared among them. We aim to maximize the average achievable sum-rate via jointly optimizing the rotation angles of all 6DMA surfaces at all APs, based on the users' spatial distribution. Since the formulated problem is non-convex and highly non-linear, we propose a Bayesian optimization-based algorithm to solve it efficiently. Simulation results show that, by enhancing signal power and mitigating interference through reduced channel cross-correlation among users, 6DMA-APs with optimized rotations can significantly improve the average sum-rate, as compared to the conventional cell-free network with fixed-position antennas and that with only a single centralized AP with optimally rotated 6DMAs, especially when the user distribution is more spatially diverse.
Abstract:Fluid antenna system (FAS)/movable antenna (MA) has emerged as a promising technology to fully exploit the spatial degrees of freedom (DoFs). In this paper, we propose a new rotatable antenna (RA) model, as a simplified implementation of six-dimensional movable antenna (6DMA), to improve the performance of wireless communication systems. Different from conventional fixed-position antenna (FPA), the proposed RA system can independently and flexibly change the three-dimensional (3D) orientation of each antenna by adjusting its declination angles to achieve desired channel realizations. Specifically, we study an RA-enabled uplink communication system, where the receive beamforming and the declination angles of all RAs are jointly optimized to maximize the minimum signal-to-interference-plus-noise ratio (SINR) among all the users. In the special single-user and free-space propagation setup, the optimal declination angles are derived in closed form with the maximum-ratio combining (MRC) beamformer applied at the base station (BS). In the general multi-user and multi-path setup, we propose an alternating optimization (AO) algorithm to alternately optimize the receive beamforming and the declination angles in an iterative manner. Simulation results are provided to demonstrate that the proposed RA-enabled system can significantly outperform other benchmark schemes.
Abstract:In this paper, we study efficient channel estimation design for an extremely large-scale intelligent reflecting surface (XL-IRS) assisted multi-user communication systems, where both the base station (BS) and users are located in the near-field region of the XL-IRS. Two unique channel characteristics of XL-IRS are considered, namely, the near-field spherical wavefronts and double-sided visibility regions (VRs) at the BS and users, which render the channel estimation for XL-IRS highly challenging. To address this issue, we propose in this paper an efficient three-step XL-IRS channel estimation method. Specifically, in the first step, an anchor node is delicately deployed near the XL-IRS to estimate the cascaded BS-IRS-anchor channel. Then, an efficient VR detection method is devised to estimate the VR information between the BS and XL-IRS. In this way, only the channels from the visible XL-IRS elements to the BS are estimated, thereby reducing the dimension of the cascaded BS-IRS-users channels to be estimated. Third, by leveraging the common BS-IRS channel, the cascaded channels for all users are consecutively estimated accounting for the VRs of the IRS-user channels. Finally, numerical results are provided to demonstrate the effectiveness of our proposed channel estimation scheme as compared to various benchmark schemes.
Abstract:Electronic countermeasure (ECM) technology plays a critical role in modern electronic warfare, which can interfere with enemy radar detection systems by noise or deceptive signals. However, the conventional active jamming strategy incurs additional hardware and power costs and has the potential threat of exposing the target itself. To tackle the above challenges, we propose a new intelligent reflecting surface (IRS)-aided radar spoofing strategy in this letter, where IRS is deployed on the surface of a target to help eliminate the signals reflected towards the hostile radar to shield the target, while simultaneously redirecting its reflected signal towards a surrounding clutter to generate deceptive angle-of-arrival (AoA) sensing information for the radar. We optimize the IRS's reflection to maximize the received signal power at the radar from the direction of the selected clutter subject to the constraint that its received power from the direction of the target is lower than a given detection threshold. We first solve this non-convex optimization problem using the semidefinite relaxation (SDR) method and further propose a lower-complexity solution for real-time implementation. Simulation results validate the efficacy of our proposed IRS-aided spoofing system as compared to various benchmark schemes.
Abstract:The ever-increasing reliance on wireless communication and sensing has led to growing concerns over the vulnerability of sensitive information to unauthorized detection and interception. Traditional anti-detection methods are often inadequate, suffering from limited adaptability and diminished effectiveness against advanced detection technologies. To overcome these challenges, this article presents the intelligent reflecting surface (IRS) as a groundbreaking technology for enabling flexible electromagnetic manipulation, which has the potential to revolutionize anti-detection in both electromagnetic stealth/spoofing (evading radar detection) and covert communications (facilitating secure information exchange). We explore the fundamental principles of IRS and its advantages over traditional anti-detection techniques and discuss various design challenges associated with implementing IRS-based anti-detection systems. Through the examination of case studies and future research directions, we provide a comprehensive overview of the potential of IRS technology to serve as a formidable shield in the modern wireless landscape.
Abstract:Electromagnetic wave absorbing material (EWAM) plays an essential role in manufacturing stealth aircraft, which can achieve the electromagnetic stealth (ES) by reducing the strength of the signal reflected back to the radar system. However, the stealth performance is limited by the coating thickness, incident wave angles, and working frequencies. To tackle these limitations, we propose a new intelligent reflecting surface (IRS)-aided ES system where an IRS is deployed at the target to synergize with EWAM for effectively mitigating the echo signal and thus reducing the radar detection probability. Considering the monotonic relationship between the detection probability and the received signal-to-noise-ratio (SNR) at the radar, we formulate an optimization problem that minimizes the SNR under the reflection constraint of each IRS element, and a semi-closed-form solution is derived by using Karush-Kuhn-Tucker (KKT) conditions. Simulation results validate the superiority of the proposed IRS-aided ES system compared to various benchmarks.
Abstract:Intelligent surfaces (ISs) have emerged as a key technology to empower a wide range of appealing applications for wireless networks, due to their low cost, high energy efficiency, flexibility of deployment and capability of constructing favorable wireless channels/radio environments. Moreover, the recent advent of several new IS architectures further expanded their electromagnetic functionalities from passive reflection to active amplification, simultaneous reflection and refraction, as well as holographic beamforming. However, the research on ISs is still in rapid progress and there have been recent technological advances in ISs and their emerging applications that are worthy of a timely review. Thus, we provide in this paper a comprehensive survey on the recent development and advances of ISs aided wireless networks. Specifically, we start with an overview on the anticipated use cases of ISs in future wireless networks such as 6G, followed by a summary of the recent standardization activities related to ISs. Then, the main design issues of the commonly adopted reflection-based IS and their state-of-theart solutions are presented in detail, including reflection optimization, deployment, signal modulation, wireless sensing, and integrated sensing and communications. Finally, recent progress and new challenges in advanced IS architectures are discussed to inspire futrue research.
Abstract:While traditional electromagnetic stealth materials/metasurfaces can render a target virtually invisible to some extent, they lack flexibility and adaptability, and can only operate within a limited frequency and angle/direction range, making it challenging to ensure the expected stealth performance. In view of this, we propose in this paper a new intelligent reflecting surface (IRS)-aided electromagnetic stealth system mounted on targets to evade radar detection, by utilizing the tunable passive reflecting elements of IRS to achieve flexible and adaptive electromagnetic stealth in a cost-effective manner. Specifically, we optimize the IRS's reflection at the target to minimize the sum received signal power of all adversary radars. We first address the IRS's reflection optimization problem using the Lagrange multiplier method and derive a semi-closed-form optimal solution for the single-radar setup, which is then generalized to the multi-radar case. To meet real-time processing requirements, we further propose low-complexity closed-form solutions based on the reverse alignment/cancellation and minimum mean-square error (MMSE) criteria for the single-radar and multi-radar cases, respectively. Additionally, we propose practical low-complexity estimation schemes at the target to acquire angle-of-arrival (AoA) and/or path gain information via a small number of receive sensing devices. Simulation results validate the performance advantages of our proposed IRS-aided electromagnetic stealth system with the proposed IRS reflection designs.