Fluid antenna system (FAS) and movable antenna (MA) have recently emerged as promising technologies to exploit new spatial degrees of freedom (DoFs), which have attracted growing attention in wireless communication. In this paper, we propose a new rotatable antenna (RA) model to improve the performance of wireless communication systems. Different from conventional fixed antennas, the proposed RA system can flexibly alter the three-dimensional (3D) boresight direction of each antenna independently by adjusting its deflection angles to achieve a desired array directional gain pattern. Specifically, we investigate an RA-enabled uplink communication system, where the receive beamforming and the deflection angles of all RAs at the base station (BS) are jointly optimized to maximize the minimum signal-to-interference-plus-noise ratio (SINR) among all the users. In the special single-user and free-space propagation setup, the optimal deflection angles of RAs are derived in closed form with the maximum-ratio combining (MRC) beamformer applied at the BS. Moreover, we analyze the asymptotic performance with an infinite number of antennas based on this solution, which theoretically proves that the RA system can achieve a higher array gain as compared to the fixed-antenna system. In the general multi-user and multi-path channel setup, we first propose an alternating optimization (AO) algorithm to alternately optimize the receive beamforming and the deflection angles of RAs in an iterative manner. Then, a two-stage algorithm that solves the formulated problem without the need for iteration is further proposed to reduce computational complexity. Simulation results are provided to validate our analytical results and demonstrate that the proposed RA system can significantly outperform other benchmark schemes.